首页> 外文期刊>Expert systems with applications >Application Of Adaptive Neuro-fuzzy Inference System For Vigilance Level Estimation By Using Wavelet-entropy Feature Extraction
【24h】

Application Of Adaptive Neuro-fuzzy Inference System For Vigilance Level Estimation By Using Wavelet-entropy Feature Extraction

机译:小波熵特征提取的自适应神经模糊推理系统在警戒水平估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the application of adaptive neuro-fuzzy inference system (ANFIS) model for estimation of vigilance level by using electroencephalogram (EEG) signals recorded during transition from wakefulness to sleep. The developed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. This study comprises of three stages. In the first stage, three types of EEG signals (alert signal, drowsy signal and sleep signal) were obtained from 30 healthy subjects. In the second stage, for feature extraction, obtained EEG signals were separated to its sub-bands using discrete wavelet transform (DWT). Then, entropy of each sub-band was calculated using Shannon entropy algorithm. In the third stage, the ANFIS was trained with the back-propagation gradient descent method in combination with least squares method. The extracted features of three types of EEG signals were used as input patterns of the three ANFIS classifiers. In order to improve estimation accuracy, the fourth ANFIS classifier (combining ANFIS) was trained using the outputs of the three ANFIS classifiers as input data. The performance of the ANFIS model was tested using the EEG data obtained from 12 healthy subjects that have not been used for the training. The results confirmed that the developed ANFIS classifier has potential for estimation of vigilance level by using EEG signals.
机译:本文介绍了使用自适应神经模糊推理系统(ANFIS)模型通过使用从觉醒到睡眠过渡期间记录的脑电图(EEG)信号来估计警惕水平的应用。所开发的ANFIS模型结合了神经网络自适应能力和模糊逻辑定性方法。这项研究包括三个阶段。在第一阶段,从30名健康受试者中获得了三种类型的EEG信号(警报信号,困倦信号和睡眠信号)。在第二阶段,为了进行特征提取,使用离散小波变换(DWT)将获得的EEG信号分离到其子带。然后,使用香农熵算法计算每个子带的熵。在第三阶段,使用反向传播梯度下降法与最小二乘法相结合的方法训练ANFIS。提取的三种类型的EEG信号的特征用作三个ANFIS分类器的输入模式。为了提高估计准确性,使用三个ANFIS分类器的输出作为输入数据来训练第四个ANFIS分类器(组合ANFIS)。使用从尚未用于训练的12位健康受试者获得的EEG数据测试了ANFIS模型的性能。结果证实,开发的ANFIS分类器具有通过使用EEG信号估计警惕水平的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号