首页> 外文期刊>Expert systems with applications >Detecting Ltr Structures In Human Genomic Sequences Usingrnprofile Hidden Markov Models
【24h】

Detecting Ltr Structures In Human Genomic Sequences Usingrnprofile Hidden Markov Models

机译:使用rnprofile隐马尔可夫模型检测人类基因组序列中的Ltr结构

获取原文
获取原文并翻译 | 示例

摘要

More than 45% of human genome has been annotated as transposable elements (TEs). The human genome is expanded by the mobilization of these TEs, which they may increase the plasticity and variation of the genome. Long terminal repeat (LTR) retrotransposons are important components in TEs. LTRs include regulatory sites, which the authors believe could be conserved in evolution. Therefore, these significant motifs in the sequence of LTRs are found and are used to train a Hidden Markov Model. These models are used as fingerprints to detect most of the known LTRs detected by RepeatMasker. LTR instances are classified into families using the predictive models proposed. These LTRs can support evolutionary analysis. A new method of detecting LTR is proposed. Analyzing LTR sequences reveals some specific motifs as LTR fingerprints, which can be built into HMM profiles. Experimental results reveal that the proposed experimental approach not only discovers most of the LTRs found by RepeatMasker, but also detects some novel LTRs. Moreover, the novel LTRs may be structurally incomplete or degenerate.
机译:超过45%的人类基因组已被注释为转座因子(TEs)。这些TE的动员使人类基因组扩展,它们可能增加基因组的可塑性和变异性。长末端重复(LTR)逆转座子是TE中的重要组成部分。 LTR包括调控位点,作者认为这些位点在进化中可能是保守的。因此,发现了LTR序列中的这些重要基序,并用于训练隐马尔可夫模型。这些模型用作指纹,以检测RepeatMasker检测到的大多数已知LTR。使用建议的预测模型将LTR实例分类为科。这些LTR可以支持进化分析。提出了一种检测LTR的新方法。分析LTR序列会发现一些特定的基序,例如LTR指纹,可以将其内置到HMM轮廓中。实验结果表明,所提出的实验方法不仅发现了RepeatMasker发现的大多数LTR,而且还发现了一些新颖的LTR。而且,新的LTR可能在结构上不完整或简并。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号