首页> 外文期刊>Expert Systems with Application >An efficient bi-objective personnel assignment algorithm based on a hybrid particle swarm optimization model
【24h】

An efficient bi-objective personnel assignment algorithm based on a hybrid particle swarm optimization model

机译:基于混合粒子群优化模型的高效双目标人员分配算法

获取原文
获取原文并翻译 | 示例

摘要

A hybrid particle swarm optimization (HPSO) algorithm which utilizes random-key (RK) encoding scheme, individual enhancement (IE) scheme, and particle swarm optimization (PSO) for solving a bi-objective personnel assignment problem (BOPAP) is presented. The HPSO algorithm which was proposed by Kuo, Horng, Kao, Lin, and Fan (2007) and Kuo et al. (2009b) is used to solve the flow-shop scheduling problem (FSSP). In the research of BOPAP, the main contribution of the work is to improve the f_1_f_2 heu-ristic algorithm which was proposed by Huang, Chiu, Yeh, and Chang (2009). The objective of the f_1_f_2 heuristic algorithm is to get the satisfaction level (SL) value which is satisfied the bi-objective values f_1, andf_2 for the personnel assignment problem. In this paper, PSO is used to search the solution of the input problem in the BOPAP space. Then, with the RK encoding scheme in the virtual space, we can exploit the global search ability of PSO thoroughly. Based on the IE scheme, we can enhance the local search ability of particles. The experimental results show that the solution quality of BOPAP based on the proposed HPSO algorithm for the first objective f_1(i.e., total score), the second objectivef_2 (i.e., stan-dard deviation), the coefficient of variance (CV), and the time cost is far better than that of the/,f_1_f_2 heu-ristic algorithm. To the best our knowledge, this presented result of the BOPAP is the best bi-objective algorithm known.
机译:提出了一种混合粒子群算法(HPSO),该算法利用随机密钥(RK)编码方案,个体增强(IE)方案和粒子群优化(PSO)解决双目标人员分配问题(BOPAP)。 HPSO算法由Kuo,Horng,Kao,Lin和Fan(2007)和Kuo等人提出。 (2009b)用于解决流水车间调度问题(FSSP)。在BOPAP的研究中,这项工作的主要贡献是改进了Huang,Chiu,Yeh和Chang(2009)提出的f_1_f_2启发式算法。 f_1_f_2启发式算法的目的是获得满足人员分配问题的双目标值f_1和f_2的满意度(SL)值。在本文中,PSO用于在BOPAP空间中搜索输入问题的解决方案。然后,通过虚拟空间中的RK编码方案,我们可以充分利用PSO的全局搜索功能。基于IE方案,我们可以增强粒子的局部搜索能力。实验结果表明,基于提出的HPSO算法的BOPAP的求解质量对于第一个目标f_1(即总分),第二个目标f_2(即标准差),方差系数(CV)和时间成本远远优于/,f_1_f_2启发式算法。就我们所知,BOPAP的这种结果是已知的最佳双目标算法。

著录项

  • 来源
    《Expert Systems with Application》 |2010年第12期|p.7825-7830|共6页
  • 作者单位

    Department of Electrical Engineering, National Taiwan University of Science and Technology, 106 Taipei, Taiwan rnLan Yang Institute of Technology, 261 I-Lan, Taiwan;

    rnDepartment of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 106 Taipei, Taiwan;

    rnDepartment of Information Management, St. Mary's Medicine Nursing and Management College, I-Lan, Taiwan;

    rnLan Yang Institute of Technology, 261 I-Lan, Taiwan;

    rnDepartment of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 106 Taipei, Taiwan;

    rnDepartment of Electronic Engineering, National United University, 36003 Miao-Li, Taiwan;

    rnDepartment of Electronic Engineering, National United University, 36003 Miao-Li, Taiwan;

    rnDepartment of Information Management, St. Mary's Medicine Nursing and Management College, I-Lan, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bi-objective personnel assignment problem; particle swarm optimization; random-key encoding scheme; individual enhancement scheme; HPSO;

    机译:双目标人员分配问题;粒子群优化;随机密钥编码方案;个人增强方案;惠普;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号