首页> 外文期刊>Expert systems with applications >Choosing the appropriate order in fuzzy time series: A new N-factor fuzzy time series for prediction of the auto industry production
【24h】

Choosing the appropriate order in fuzzy time series: A new N-factor fuzzy time series for prediction of the auto industry production

机译:在模糊时间序列中选择适当的顺序:用于预测汽车工业生产的新的N因子模糊时间序列

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new fuzzy time series based on high-order fuzzy logical relationships and Tabu Search is presented. The proposed method constructs N-factor high-order fuzzy logical relationships based on the historical data and uses Tabu Search and a parametric fuzzy inference system to adjust the length of intervals in the universe of discourse for prediction to increase the forecasting accuracy rate. We have applied our model for different cases with different factors. The model is applied for prediction of auto industry production of Iranian companies with a three-factor fuzzy time series model. The results show that the proposed method gets a higher forecasting accuracy rate than the existing methods in all cases.
机译:本文提出了一种基于高阶模糊逻辑关系和禁忌搜索的模糊时间序列。该方法基于历史数据构造N因子高阶模糊逻辑关系,并使用禁忌搜索和参数模糊推理系统来调整话语范围中的区间长度以进行预测,以提高预测准确率。我们将模型应用于具有不同因素的不同案例。该模型用于三因素模糊时间序列模型的预测伊朗公司的汽车工业生产。结果表明,在所有情况下,所提出的方法都比现有方法具有更高的预测准确率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号