首页> 外文期刊>Expert systems with applications >Support vector regression based hybrid rule extraction methods for forecasting
【24h】

Support vector regression based hybrid rule extraction methods for forecasting

机译:基于支持向量回归的混合规则提取方法

获取原文
获取原文并翻译 | 示例

摘要

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM) introduced by Vapnik (1995). The main drawback of these newer techniques is their lack of interpretability. In other words, it is difficult for the human analyst to understand the knowledge learnt by these models during training. The most popular way to overcome this difficulty is to extract if-then rules from SVM and SVR. Rules provide explanation capability to these models and improve the compre-hensibility of the system. Over the last decade, different algorithms for extracting rules from SVM have been developed. However rule extraction from SVR is not widely available yet. In this paper a novel hybrid approach for extracting rules from SVR is presented. The proposed hybrid rule extraction procedure has two phases: (1) Obtain the reduced training set in the form of support vectors using SVR (2) Train the machine leaning techniques (with explanation capability) using the reduced training set. Machine learning techniques viz., Classification And Regression Tree (CART), Adaptive Network based Fuzzy Inference System (ANFIS) and Dynamic Evolving Fuzzy Inference System (DENFIS) are used in the phase 2. The proposed hybrid rule extraction procedure is compared to stand-alone CART, ANFIS and DENFIS. Extensive experiments are conducted on five benchmark data sets viz. Auto MPG, Body Fat, Boston Housing, Forest Fires and Pollution, to demonstrate the effectiveness of the proposed approach in generating accurate regression rules. The efficiency of these techniques is measured using Root Mean Squared Error (RMSE). From the results obtained, it is concluded that when the support vectors with the corresponding predicted target values are used, the SVR based hybrids outperform the stand-alone intelligent techniques and also the case when the support vectors with the corresponding actual target values are used.
机译:支持向量回归(SVR)根据Vapnik(1995)提出的支持向量机(SVM)的概念解决了回归问题。这些较新技术的主要缺点是缺乏可解释性。换句话说,人类分析人员很难理解在训练过程中这些模型所学的知识。解决此难题的最流行方法是从SVM和SVR中提取if-then规则。规则为这些模型提供了解释能力,并提高了系统的可理解性。在过去的十年中,已经开发了用于从SVM提取规则的不同算法。但是,从SVR提取规则尚不广泛。本文提出了一种从SVR中提取规则的新型混合方法。提出的混合规则提取过程分为两个阶段:(1)使用SVR以支持向量的形式获得简化的训练集(2)使用简化的训练集训练机器学习技术(具有解释能力)。在阶段2中,使用了机器学习技术,即分类和回归树(CART),基于自适应网络的模糊推理系统(ANFIS)和动态演进模糊推理系统(DENFIS)。将拟议的混合规则提取过程与标准单独的CART,ANFIS和DENFIS。对五个基准数据集进行了广泛的实验。 Auto MPG,Body Fat,Boston Housing,Forest Fires and Pollution,以证明所提出的方法在生成准确的回归规则方面的有效性。这些技术的效率是使用均方根误差(RMSE)来衡量的。从获得的结果可以得出结论,当使用具有相应预测目标值的支持向量时,基于SVR的混合动力系统胜过独立智能技术,并且也比使用具有相应实际目标值的支持向量的情况更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号