首页> 外文期刊>Expert systems with applications >A hybrid forecast marketing timing model based on probabilistic neural network, rough set and C4.5
【24h】

A hybrid forecast marketing timing model based on probabilistic neural network, rough set and C4.5

机译:基于概率神经网络,粗糙集和C4.5的混合预测营销时机模型

获取原文
获取原文并翻译 | 示例

摘要

One of the major difficulties in investment strategy is to integrate supply chain with finance for controlling the marketing timing. The present study uses not only the different indexes in fundamental and technical analysis, but also the rough set theory and artificial neural networks inference system to construct three investment market timing classification models. This includes probabilistic neural network classification model, rough set classification model and hybrid classification model combining probabilistic neural network, rough sets and C4.5 decision tree. We use the forecasting accuracy and investment return to evaluate the efficacy of these three classification models. Empirical experimentation shown hybrid classification model help construct a better predictive power trading system in terms of stock market timing analysis.
机译:投资策略的主要困难之一是将供应链与财务整合以控制营销时机。本研究不仅使用了基础和技术分析中的不同指标,还使用了粗糙集理论和人工神经网络推理系统来构建三种投资市场时间分类模型。这包括概率神经网络分类模型,粗糙集分类模型和结合了概率神经网络,粗糙集和C4.5决策树的混合分类模型。我们使用预测准确性和投资回报来评估这三种分类模型的有效性。实证实验表明,混合分类模型有助于在股市时机分析方面构建更好的预测力交易系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号