首页> 外文期刊>Expert systems with applications >Intelligent data fusion system for predicting vehicle collision warning using vision/GPS sensing
【24h】

Intelligent data fusion system for predicting vehicle collision warning using vision/GPS sensing

机译:使用视觉/ GPS感应预测车辆碰撞预警的智能数据融合系统

获取原文
获取原文并翻译 | 示例

摘要

In this study, fuzzy approach with fault-tolerance has proposed to fuse heterogeneous sensed data and overcome the problem of imprecise collision warning due to perturbed input signal when processing the pre-crash warning. Meanwhile, another problem relevant to the danger in drowsy driving, involving fatigue level, carbon monoxide concentration, and breath alcohol concentration, was considered and has approximately reasoned to an extra reaction time to modify NHTSA algorithm. A vision-sensing analysis cooperating with global-positioning system is applied for lane marking detection and collision warning, particularly exchanging the dynamic and static information between neighboring cars via inter-vehicle wireless communications. In addition to pre-crash warning, event data recording very useful for accident reconstruction on scene is also established here. In order to speed up data fusion on both quantum-tuned back-propagation neural network (QT-BPNN) and adaptive network-based fuzzy inference system (ANFIS), a distributed dual-platform DaVinci+XScale_NAV270 has been employed. Several tests on system's reliability and validity have been done successfully, and the comparison of system effectiveness showed that our proposed approach outperforms two current well-known collision-warning systems (AWS-Mobileye and ACWS-Delphi).
机译:在这项研究中,提出了一种具有容错能力的模糊方法来融合异类检测数据,并克服了在处理碰撞前警告时由于输入信号被扰动而导致碰撞警告不精确的问题。同时,还考虑了另一个与困倦驾驶危险有关的问题,包括疲劳水平,一氧化碳浓度和呼吸酒精浓度,并大致上考虑了修改NHTSA算法需要额外的反应时间。与全球定位系统配合使用的视觉传感分析被用于车道标记检测和碰撞预警,特别是通过车内无线通信在相邻汽车之间交换动态和静态信息。除了碰撞前警告,这里还建立了对现场事故重建非常有用的事件数据记录。为了加快在量子调谐反向传播神经网络(QT-BPNN)和基于自适应网络的模糊推理系统(ANFIS)上的数据融合,已采用了分布式双平台DaVinci + XScale_NAV270。已经成功地进行了几次系统可靠性和有效性测试,系统有效性的比较表明,我们提出的方法优于目前两个著名的碰撞预警系统(AWS-Mobileye和ACWS-Delphi)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号