首页> 外文期刊>Expert systems with applications >DSS for computer security incident response applying CBR and collaborative response
【24h】

DSS for computer security incident response applying CBR and collaborative response

机译:使用CBR和协作响应的DSS用于计算机安全事件响应

获取原文
获取原文并翻译 | 示例

摘要

Recently, as hacking attempts increase dramatically; most enterprises are forced to employ some safeguards for hacking proof. For example, firewall or IPS (Intrusion Prevention System) selectively accepts the incoming packets, and IDS (Intrusion Detection System) detects the attack attempts from network. The latest version of firewall works in cooperation with IDS to immediately response to hacking attempts. However, it may make false alarms that misjudge normal traffic as hacking traffic and cause network problems to block the normal IP address by false alarms. By these false alarms made by IDS, system administrators or CSOs make wrong decisions and important data may be exposed or the availability of network or server system may be exhausted. Therefore, it is important to minimize the false alarms.rnAs a way of minimizing false alarms and supporting adequate decisions, we suggest the RFM (Recency, Frequency, Monetary) analysis methodology, which analyzes log files with incorporating three criteria of recency, frequency and monetary with statistical process control chart, and thus leads to an intuitive detection of anomaly and misuse events. Moreover, to cope with hacking attempts proactively, we apply CBR (case based reasoning) to find out similarities between already known hacking patterns and new hacking patterns. With the RFM analysis methodology and CBR, we develop DSS which can minimize false alarms and decrease the time to respond to hacking events. In case that RFM analysis module finds out unknown viruses or worms occurred, this CBR system matches the most similar incident case from case-based database. System administrators can easily get information about how to fix and how we fixed in similar cases. And CSOs can build a blacklist of frequently detected IP addresses and users. This blacklist can be used for incident handling.rnFinally, we propose collaborative incident response system with DSS, this distributed agent systems interactively exchange the suspicious users and source IP addresses data and decide who is true-anomalous users and which IP addresses is the most riskiest and then deny all connections from that users and IP addresses automatically with less false-positives.
机译:最近,随着黑客攻击的尝试急剧增加;大多数企业被迫采用一些安全措施来进行黑客证明。例如,防火墙或IPS(入侵防御系统)有选择地接受传入的数据包,而IDS(入侵检测系统)检测来自网络的攻击尝试。最新版本的防火墙与IDS协同工作,可立即响应黑客攻击。但是,它可能会产生错误警报,从而误判正常流量为黑客流量,并导致网络问题通过错误警报阻止正常IP地址。通过IDS发出的这些错误警报,系统管理员或CSO会做出错误的决定,并且可能会暴露重要数据或耗尽网络或服务器系统的可用性。因此,最大程度地减少错误警报非常重要。作为减少错误警报和支持适当决策的一种方法,我们建议使用RFM(新近度,频率,货币)分析方法,该方法可结合新近度,频率和具有统计过程控制图的货币,因此可以直观地检测异常和滥用事件。此外,为了主动应对黑客尝试,我们应用CBR(基于案例的推理)来找出已知的黑客模式与新的黑客模式之间的相似性。借助RFM分析方法和CBR,我们开发了DSS,该DSS可以最大程度地减少错误警报并减少响应黑客事件的时间。如果RFM分析模块发现未知病毒或蠕虫,则此CBR系统将匹配基于案例的数据库中最相似的事件案例。系统管理员可以轻松获取有关在类似情况下如何修复以及我们如何修复的信息。 CSO可以建立一个经常检测到的IP地址和用户的黑名单。最后,我们提出了与DSS协作的事件响应系统,该分布式代理系统以交互方式交换可疑用户和源IP地址数据,并确定谁是真正的异常用户,以及哪个IP地址最危险然后以较少的误报率自动拒绝来自该用户和IP地址的所有连接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号