首页> 外文期刊>Expert Systems with Application >State-of-health estimator based-on extension theory with a learning mechanism for lead-acid batteries
【24h】

State-of-health estimator based-on extension theory with a learning mechanism for lead-acid batteries

机译:基于可拓理论和铅酸电池学习机制的健康状态估计器

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this paper is to design and implement an improved intelligent state-of-health (SOH) estimator for estimating the useful life of lead-acid batteries. Laboratory studies were carried out to measure and record the distributed range of characteristic values in each SOH cycle for the battery subject to cycles of charging and discharging experiments. The measured coup de fouet voltage, internal resistance, and transient current are used as characteristics to develop an intelligent SOH evaluation algorithm. This method is based on the extension matter-element model that has been modified in this research by adding a learning mechanism for evaluation SOH of batteries. The proposed algorithm is relatively simple so that it can be easily implemented with a programmable system-on-chip (PSOC) microcontroller achieve rapid evaluation of battery SOH with precision by using a concise hardware circuit.
机译:本文的主要目的是设计和实现一种改进的智能健康状态(SOH)估计器,以估计铅酸电池的使用寿命。进行了实验室研究,以测量和记录电池在每个SOH循环中经受充电和放电实验循环的特性值的分布范围。测得的电容电压,内部电阻和瞬态电流用作开发智能SOH评估算法的特征。该方法基于可扩展物元模型,该模型已通过添加用于评估电池SOH的学习机制而在本研究中进行了修改。所提出的算法相对简单,因此可以使用可编程的片上系统(PSOC)微控制器轻松实现,并通过使用简洁的硬件电路来快速,准确地评估电池SOH。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号