首页> 外文期刊>Expert Systems with Application >How do users describe their information need: Query recommendation based on snippet click model
【24h】

How do users describe their information need: Query recommendation based on snippet click model

机译:用户如何描述他们的信息需求:基于摘要点击模型的查询建议

获取原文
获取原文并翻译 | 示例

摘要

Query recommendation helps users to describe their information needs more clearly so that search engines can return appropriate answers and meet their needs. State-of-the-art researches prove that the use of users' behavior information helps to improve query recommendation performance. Instead of finding the most similar terms previous users queried, we focus on how to detect users' actual information need based on their search behaviors. The key idea of this paper is that although the clicked documents are not always relevant to users' queries, the snippets which lead them to the click most probably meet their information needs. Based on analysis into large-scale practical search behavior log data, two snippet click behavior models are constructed and corresponding query recommendation algorithms are proposed. Experimental results based on two widely-used commercial search engines' click-through data prove that the proposed algorithms outperform practical recommendation methods of these two search engines. To the best of our knowledge, this is the first time that snippet click models are proposed for query recommendation task.
机译:查询推荐可帮助用户更清楚地描述其信息需求,以便搜索引擎可以返回适当的答案并满足其需求。最新的研究证明,使用用户的行为信息有助于提高查询推荐性能。与其查找先前用户查询过的最相似的术语,我们着重于如何根据用户的搜索行为来检测用户的实际信息需求。本文的主要思想是,尽管单击的文档并不总是与用户的查询相关,但引导他们单击的摘录最有可能满足其信息需求。在对大规模实用搜索行为日志数据进行分析的基础上,构建了两个摘要点击行为模型,并提出了相应的查询推荐算法。基于两个广泛使用的商业搜索引擎的点击数据的实验结果证明,所提出的算法优于这两个搜索引擎的实用推荐方法。据我们所知,这是首次提出将片段点击模型用于查询推荐任务。

著录项

  • 来源
    《Expert Systems with Application》 |2011年第11期|p.13847-13856|共10页
  • 作者单位

    State Key Lab of Intelligent Technology & Systems, Tsinghua National Laboratory for Information Science and Technology, CS &T Department, Tsinghua University,Beijing 100084. PR China;

    State Key Lab of Intelligent Technology & Systems, Tsinghua National Laboratory for Information Science and Technology, CS &T Department, Tsinghua University,Beijing 100084. PR China;

    State Key Lab of Intelligent Technology & Systems, Tsinghua National Laboratory for Information Science and Technology, CS &T Department, Tsinghua University,Beijing 100084. PR China;

    State Key Lab of Intelligent Technology & Systems, Tsinghua National Laboratory for Information Science and Technology, CS &T Department, Tsinghua University,Beijing 100084. PR China;

    State Key Lab of Intelligent Technology & Systems, Tsinghua National Laboratory for Information Science and Technology, CS &T Department, Tsinghua University,Beijing 100084. PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    web data mining; query recommendation; user behavior analysis; click-through data;

    机译:Web数据挖掘;查询推荐;用户行为分析;点击数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号