首页> 外文期刊>Expert Systems with Application >A hybrid tracking method for scaled and oriented objects in crowded scenes
【24h】

A hybrid tracking method for scaled and oriented objects in crowded scenes

机译:拥挤场景中定标定向目标的混合跟踪方法

获取原文
获取原文并翻译 | 示例

摘要

Traditional kernel based means shift assumes constancy of the object scale and orientation during the course of tracking and uses a symmetric/asymmetric kernel, such as a circle or an ellipse for target representation. In a tracking scenario, it is not uncommon to observe objects with complex shapes whose scale and orientation constantly change due to the camera and object motions. In this paper, we propose a multi object tracking method which tracks the complete object regions, adapts to changing scale and orientation, and assigns consistent labels to each object throughout real world video sequences. Our approach has five major components: (1) dynamic background subtraction, (2) level sets, (3) mean shift convergence, (4) object identification, and (5) occlusion handling. The experimental results show that the proposed method is superior to the traditional mean shift tracking in the following aspects: (1) it provides consistent multi objects tracking instead of single object throughout the video, (2) it is not affected by the scale and orientation changes of the tracked objects, (3) its computational complexity is much less than traditional mean shift due to using level set method instead of probability density.
机译:传统的基于核的均值偏移假设在跟踪过程中对象比例和方向保持不变,并使用对称/不对称核(例如圆形或椭圆形)作为目标表示。在跟踪情况下,观察具有复杂形状的对象的情况并不少见,这些对象的尺寸和方向会因摄像机和对象的运动而不断变化。在本文中,我们提出了一种多对象跟踪方法,该方法可以跟踪整个对象区域,适应不断变化的比例和方向,并在整个真实视频序列中为每个对象分配一致的标签。我们的方法有五个主要组成部分:(1)动态背景扣除,(2)水平集,(3)平均偏移收敛,(4)对象识别和(5)遮挡处理。实验结果表明,该方法在以下几个方面优于传统的均值漂移跟踪:(1)在整个视频中提供一致的多对象跟踪,而不是单个对象;(2)不受比例和方向的影响。 (3)由于使用水平集方法而不是概率密度,其计算复杂度远小于传统的均值漂移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号