首页> 外文期刊>Expert Systems with Application >A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling problem
【24h】

A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling problem

机译:一种新的混合多目标Pareto存档PSO算法,用于双目标作业车间调度问题

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new mathematical model for a bi-objective job shop scheduling problem with sequence-dependent setup times and ready times that minimizes the weighted mean flow time (F_w) and total penalties of tardiness and earliness (E/T). Obtaining an optimal solution for this complex problem especially in large-sized problem instances within reasonable computational time is cumbersome. Thus, we propose a new multi-objective Pareto archive particle swarm optimization (PSO) algorithm combined with genetic operators as variable neighborhood search (VNS). Furthermore, we use a character of scatter search (SS) to select new swarm in each iteration in order to find Pareto optimal solutions for the given problem. Some test problems are examined to validate the performance of the proposed Pareto archive PSO in terms of the solution quality and diversity level. In addition, the efficiency of the proposed Pareto archive PSO, based on various metrics, is compared with two prominent multi-objective evolutionary algorithms, namely NSGA-II and SPEA-II. Our computational results show the superiority of our proposed algorithm to the foregoing algorithms, especially for the large-sized problems.
机译:本文提出了一种新的数学模型,该模型针对具有目标序列的建立时间和准备时间的双目标作业车间调度问题,该模型将加权平均流时间(F_w)以及拖延和提早(E / T)的总损失最小化。特别是在合理的计算时间内在大型问题实例中获得针对此复杂问题的最佳解决方案很麻烦。因此,我们提出了一种新的多目标帕累托档案粒子群优化(PSO)算法,该算法结合了遗传算子作为变量邻域搜索(VNS)。此外,我们使用散点搜索(SS)的特征在每次迭代中选择新的群,以便为给定问题找到Pareto最优解。检查了一些测试问题,以根据解决方案质量和多样性级别验证所提出的Pareto存档PSO的性能。此外,将基于各种指标的拟议Pareto存档PSO的效率与两种著名的多目标进化算法NSGA-II和SPEA-II进行了比较。我们的计算结果表明,我们提出的算法优于上述算法,特别是对于大型问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号