首页> 外文期刊>Expert systems with applications >ETTA-IM: A deep web query interface matching approach based on evidence theory and task assignment
【24h】

ETTA-IM: A deep web query interface matching approach based on evidence theory and task assignment

机译:ETTA-IM:一种基于证据理论和任务分配的深度网络查询界面匹配方法

获取原文
获取原文并翻译 | 示例

摘要

Integrating Deep Web data sources require highly accurate matches between the attributes of the query interfaces. While interface matching has received more attentions recently, current approaches are still not sufficiently perfect: (a) they all suppose that every interface attribute type has been predefined; (b) most of them combine multiple matchers taking into account different aspects of information about schema, but the weights of individual matchers are usually manually generated, and there may exist a high degree of inconsistency among different matchers; and (c) most of them only consider one-to-one matches of attributes over the interfaces and lack effective mathematical modeling. Therefore, a novel deep web query interface matching approach called ETTA-IM is proposed based on evidence theory and task assignment. Varied kinds of type recognizers are defined to identify the types of interface attributes which are used to divide the schema space into several schema subspaces. A modified D-S evidence theory is used to automatically combine multiple matchers and to solve high conflicts among different matchers. One-to-one match decision is converted to extended task assignment problem and some tree structure heuristic rules are used to perform one-to-many match decision. Experiments show that ETTA-IM approach yields high precision and recall measures.%School of Computer Science and Technology, Shandong University, Jinan 250101, China,School of Computer Science and Technology, Xuzhou Normal University, Xuzhou 221000, China;School of Computer Science and Technology, Shandong University, Jinan 250101, China;School of Computer Science and Technology, Shandong University, Jinan 250101, China;School of Computer Science and Technology, Shandong University, Jinan 250101, China;
机译:集成深度Web数据源要求查询接口的属性之间具有高度精确的匹配。尽管接口匹配最近受到了越来越多的关注,但是当前的方法仍然不够完善:(a)它们都假定每种接口属性类型都已预定义; (b)它们中的大多数结合了多个匹配器,同时考虑到有关架构的信息的不同方面,但是单个匹配器的权重通常是手动生成的,并且不同匹配器之间可能存在高度不一致的情况; (c)它们中的大多数仅考虑接口上属性的一对一匹配,并且缺乏有效的数学建模。因此,基于证据理论和任务分配,提出了一种新颖的深度网络查询接口匹配方法,称为ETTA-IM。定义了各种类型的识别器来标识接口属性的类型,这些属性用于将模式空间划分为几个模式子空间。修改后的D-S证据理论用于自动组合多个匹配器并解决不同匹配器之间的高冲突。将一对一匹配决策转换为扩展任务分配问题,并使用一些树结构启发式规则来执行一对多匹配决策。实验表明,ETTA-IM方法具有较高的精度和查全率。山东大学计算机科学与技术学院,济南250101,徐州师范大学计算机科学与技术学院,徐州221000;计算机科学学院山东大学计算机科学与技术学院,济南250101;山东大学计算机科学与技术学院,济南250101;山东大学计算机科学与技术学院,济南250101;

著录项

  • 来源
    《Expert systems with applications》 |2011年第8期|p.10218-10228|共11页
  • 作者单位

    School of Computer Science and Technology, Shandong University, Jinan 250101, China,School of Computer Science and Technology, Xuzhou Normal University, Xuzhou 221000, China;

    School of Computer Science and Technology, Shandong University, Jinan 250101, China;

    School of Computer Science and Technology, Shandong University, Jinan 250101, China;

    School of Computer Science and Technology, Shandong University, Jinan 250101, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    query interface matching; schema matching; deep web; web data integration;

    机译:查询接口匹配;模式匹配;深网;网络数据整合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号