首页> 外文期刊>Expert systems with applications >Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis
【24h】

Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis

机译:基于神经网络的特征选择方法与遗传算法在变速箱故障诊断中的应用与比较

获取原文
获取原文并翻译 | 示例

摘要

Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran;Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada;Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran;Biomedical Engineering Department, Amirkabir University, Tehran, Iran;%In this paper, a system based on artificial neural networks (ANNs) was designed to diagnose different types of fault in a gearbox. An experimental set of data was used to verify the effectiveness and accuracy of the proposed method. The system was optimized by eliminating unimportant features using a feature selection method (UTA method). Consequently, the fault detection system operates faster while the classification error decreases or remains constant in some other cases. This method of feature selection is compared with Genetic Algorithm (GA) results. The findings verify that the results of the UTA method are as accurate as GA, despite its simple algorithm.
机译:伊朗德黑兰Tarbiat Modares大学机械工程系;加拿大圣约翰斯纪念大学工程与应用科学系;伊朗德黑兰Tarbiat Modares大学机械工程系;伊朗阿米尔卡比尔大学生物医学工程系,伊朗德黑兰;%本文设计了一种基于人工神经网络(ANN)的系统来诊断齿轮箱中不同类型的故障。实验数据集用于验证该方法的有效性和准确性。通过使用特征选择方法(UTA方法)消除不重要的特征来优化系统。因此,在某些其他情况下,故障检测系统的运行速度更快,而分类误差减小或保持恒定。将这种特征选择方法与遗传算法(GA)结果进行了比较。尽管算法简单,但研究结果证实了UTA方法的结果与GA一样准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号