首页> 外文期刊>Expert Systems with Application >Optical sensor measurement and biometric-based fractal pattern classifier for fingerprint recognition
【24h】

Optical sensor measurement and biometric-based fractal pattern classifier for fingerprint recognition

机译:光学传感器测量和基于生物特征的分形图案分类器用于指纹识别

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes biometric-based fractal pattern classifier for fingerprint recognition using grey relational analysis (GRA). Fingerprint patterns have arch, loop, whorl, and accidental morphologys, and embed singular points, which result in establishing fingerprint individuality. An automatic fingerprint identification system consists of three stages: image acquisition and processing, feature extraction, and pattern recognition. Fingerprint images are captured from subjects using an optical fingerprint reader (OFR). Digital image preprocessing (DIP) is used to refine out noise, enhance the image, convert to binary image, and locate the reference point. For binary images, Katz's algorithm is employed to estimate the fractal dimension (FD) from two-dimension (2D) image. Biometric characteristics are extracted as fractal patterns using Weierstrass cosine function (WCF) with different FDs. GRA performs to compare the fractal patterns among the small-scale database. For 30 subjects in the laboratory, the proposed classifier demonstrates greater efficiency and higher accuracy in fingerprint recognition.
机译:提出了一种基于生物特征的分形模式分类器,用于基于灰色关联分析的指纹识别。指纹图案具有拱形,环状,螺纹状和意外形态,并嵌入奇异点,从而建立了指纹个性。自动指纹识别系统包括三个阶段:图像获取和处理,特征提取和模式识别。使用光学指纹读取器(OFR)从对象捕获指纹图像。数字图像预处理(DIP)用于消除噪声,增强图像,转换为二进制图像并定位参考点。对于二值图像,采用Katz算法从二维(2D)图像估计分形维数(FD)。使用具有不同FD的Weierstrass余弦函数(WCF)将生物特征提取为分形模式。 GRA执行比较小型数据库之间的分形模式。对于实验室中的30位受试者,所提出的分类器在指纹识别方面显示出更高的效率和更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号