首页> 外文期刊>Expert Systems with Application >Model updating of multistory shear buildings for simultaneous identification of mass, stiffness and damping matrices using two different soft-computing methods
【24h】

Model updating of multistory shear buildings for simultaneous identification of mass, stiffness and damping matrices using two different soft-computing methods

机译:使用两种不同的软计算方法同时更新多层剪力建筑物的模型,以便同时识别质量,刚度和阻尼矩阵

获取原文
获取原文并翻译 | 示例

摘要

In this research, two novel methods for simultaneous identification of mass-damping-stiffness of shear buildings are proposed. The first method presents a procedure to estimate the natural frequencies, modal damping ratios, and modal shapes of shear buildings from their forced vibration responses. To estimate the coefficient matrices of a state-space model, an auto-regressive exogenous excitation (ARX) model cooperating with a neural network concept is employed. The modal parameters of the structure are then evaluated from the eigenparameters of the coefficient matrix of the model. Finally, modal parameters are used to identify the physical/structural (i.e., mass, damping, and stiffness) matrices of the structure. In the second method, a direct strategy of physical/structural identification is developed from the dynamic responses of the structure without any eigenvalue analysis or optimization processes that are usually necessary in inverse problems. This method modifies the governing equations of motion based on relative responses of consecutive stories such that the new set of equations can be implemented in a cluster of artificial neural networks. The number of neural networks is equal to the number of degree-of-freedom of the structure. It is shown the noise effects may partially be eliminated by using high-order finite impulse response (FIR) filters in both methods. Finally, the feasibility and accuracy of the presented model updating methods are examined through numerical studies on multistory shear buildings using the simulated records with various noise levels. The excellent agreement of the obtained results with those of the finite element models shows the feasibility of the proposed methods.
机译:在这项研究中,提出了两种同时识别剪力建筑物的质量阻尼刚度的新方法。第一种方法提出了一种程序,根据剪力建筑物的强迫振动响应来估算其固有频率,模态阻尼比和模态形状。为了估计状态空间模型的系数矩阵,采用了与神经网络概念配合使用的自回归外生激励(ARX)模型。然后从模型的系数矩阵的特征参数中评估结构的模态参数。最后,模态参数用于识别结构的物理/结构(即质量,阻尼和刚度)矩阵。在第二种方法中,从结构的动态响应中开发了物理/结构识别的直接策略,而无需任何特征值分析或优化过程,而这些过程通常是反问题所必需的。该方法基于连续故事的相对响应来修改运动的控制方程,以便可以在一组人工神经网络中实现新的方程组。神经网络的数量等于结构的自由度的数量。结果表明,两种方法都可以通过使用高阶有限脉冲响应(FIR)滤波器来部分消除噪声影响。最后,通过使用不同噪声水平的模拟记录对多层剪力建筑物进行数值研究,检验了所提出的模型更新方法的可行性和准确性。所得结果与有限元模型的吻合很好,表明了所提方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号