首页> 外文期刊>Expert Systems with Application >Estimation of California bearing ratio by using soft computing systems
【24h】

Estimation of California bearing ratio by using soft computing systems

机译:使用软计算系统估算加利福尼亚的承载比

获取原文
获取原文并翻译 | 示例

摘要

This study presents the application of different methods (simple-multiple analysis and artificial neural networks) for the estimation of the California bearing ratio (CBR) from sieve analysis, Atterberg limits, maximum dry unit weight and optimum moisture content of the soils. The resistance of granular soils, which are in the superstructure foundation and subgrade layers are usually tested by CBR (California bearing ratio), which is an old and still extensively used experiment. The data were collected from the public highways of Turkey's different regions. Regression analysis and artificial neural network estimation indicated strong correlations (R~2 = 0.80-0.95) between the sieve analysis, Atterberg limits, maximum dry unit weight (MDD) and optimum moisture content (0MC). It has been shown that the correlation equations obtained as a result of regression analyses are in satisfactory agreement with the test results. It is recommended that the proposed correlations will be useful for a preliminary design of a project where there is a financial limitation and limited time.
机译:这项研究提出了不同的方法(简单多元分析和人工神经网络)的应用,这些方法可以通过筛分分析,Atterberg限值,最大单位干重和土壤的最佳水分含量来估算加利福尼亚的承载比(CBR)。上部结构基础和路基层中的粒状土壤的抗性通常通过CBR(加利福尼亚承载比)进行测试,这是一个古老且仍被广泛使用的实验。数据是从土耳其不同地区的公共公路收集的。回归分析和人工神经网络估计表明,筛分分析,Atterberg限值,最大干重(MDD)和最佳水分含量(0MC)之间具有很强的相关性(R〜2 = 0.80-0.95)。已经表明,通过回归分析获得的相关方程与测试结果令人满意。建议将建议的相关性用于存在财务限制和有限时间的项目的初步设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号