首页> 外文期刊>Expert Systems with Application >The hybrid model of neural networks and genetic algorithms for the design of controls for internet-based systems for business-to-consumer electronic commerce
【24h】

The hybrid model of neural networks and genetic algorithms for the design of controls for internet-based systems for business-to-consumer electronic commerce

机译:基于神经网络和遗传算法的混合模型,用于设计企业对消费者电子商务的基于Internet的系统的控件

获取原文
获取原文并翻译 | 示例

摘要

As organizations become increasingly dependent on Internet-based systems for business-to-consumer electronic commerce (ISB2C), the issue of IS security becomes increasingly important. As the usage of security controls is related to the implementation of ISB2C, the extent of ISB2C controls can be adjusted in order to enable the greatest extent of implementation of ISB2C. This study intends to propose 1SB2C-NNGA (ISB2C-controls design using neural networks and genetic algorithms), a hybrid optimization model using neural networks and genetic algorithms for the design of ISB2C controls, which uses back-propagation neural networks (BPN) model as a prediction of controls using system environments, and GA as a pattern directed search mechanism to estimate the exponent of independent variables (i.e., ISB2C controls) in multivariate regression analysis of power model. The effect of system environments on controls can be estimated using BPN model which outperformed linear regression analysis in terms of square root of mean squared error. The effect of each mode of controls on implementation (volume) can be identified using exponents and standardized coefficients in the GA-based nonlinear regression analysis in ISB2C-NNGA. ISB2C-NNGA outperformed conventional linear regression analysis in prediction accuracy in terms of the average R square and sum of squared error. ISB2C can suggest the best set of values for controls to be recommended from several candidate sets of values for controls by identifying the set of values for controls which produce greatest extent of ISB2C implementation. The results of study will support the design of ISB2C controls effectively.
机译:随着企业越来越依赖于基于Internet的企业对消费者电子商务(ISB2C)系统,IS安全问题变得越来越重要。由于安全控件的使用与ISB2C的实现有关,因此可以调整ISB2C控件的范围,以最大程度地实现ISB2C的实现。本研究旨在提出1SB2C-NNGA(使用神经网络和遗传算法的ISB2C控件设计),使用神经网络和遗传算法的混合优化模型来设计ISB2C控件,该模型将反向传播神经网络(BPN)模型用作使用系统环境对控件进行预测,以及将GA作为一种模式有向搜索机制,以在功率模型的多元回归分析中估计自变量(即ISB2C控件)的指数。可以使用BPN模型估算系统环境对控件的影响,该模型在均方误差的平方根方面优于线性回归分析。在ISB2C-NNGA中基于GA的非线性回归分析中,可以使用指数和标准化系数来确定每种控制方式对实施(体积)的影响。在预测准确度方面,ISB2C-NNGA在平均R平方和平方误差总和方面优于传统的线性回归分析。 ISB2C可以通过识别产生ISB2C实施程度最大的控件的值集,从控件的多个候选值集中建议最佳的控件值集。研究结果将有效支持ISB2C控件的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号