首页> 外文期刊>Expert Systems with Application >Fault diagnosis of ball bearings using machine learning methods
【24h】

Fault diagnosis of ball bearings using machine learning methods

机译:使用机器学习方法对球轴承进行故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Ball bearings faults are one of the main causes of breakdown of rotating machines. Thus, detection and diagnosis of mechanical faults in ball bearings is very crucial for the reliable operation. This study is focused on fault diagnosis of ball bearings using artificial neural network (ANN) and support vector machine (SVM). A test rig of high speed rotor supported on rolling bearings is used. The vibration response are obtained and analyzed for the various defects of ball bearings. The specific defects are considered as crack in outer race, inner race with rough surface and corrosion pitting in balls. Statistical methods are used to extract features and to reduce the dimensionality of original vibration features. A comparative experimental study of the effectiveness of ANN and SVM is carried out. The results show that the machine learning algorithms mentioned above can be used for automated diagnosis of bearing faults. It is also observed that the severe (chaotic) vibrations occur under bearings with rough inner race surface and ball with corrosion pitting.
机译:球轴承故障是旋转机械故障的主要原因之一。因此,检测和诊断球轴承中的机械故障对于可靠运行至关重要。这项研究的重点是使用人工神经网络(ANN)和支持向量机(SVM)进行球轴承的故障诊断。使用了支撑在滚动轴承上的高速转子试验台。获得并分析了球轴承各种缺陷的振动响应。特殊缺陷被认为是外圈裂纹,内圈粗糙表面的腐蚀以及球的腐蚀点。统计方法用于提取特征并减少原始振动特征的维数。进行了ANN和SVM有效性的对比实验研究。结果表明,上述机器学习算法可用于轴承故障的自动诊断。还可以观察到,在带有粗糙内圈表面的轴承和带有腐蚀点蚀的球的轴承下会发生严重的(混乱)振动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号