首页> 外文期刊>Expert Systems with Application >Application of principal component analysis to ECG signals for automated diagnosis of cardiac health
【24h】

Application of principal component analysis to ECG signals for automated diagnosis of cardiac health

机译:主成分分析在ECG信号中用于心脏健康自动诊断的应用

获取原文
获取原文并翻译 | 示例

摘要

Electrocardiogram (ECG) is the P, QRS, T wave indicating the electrical activity of the heart. The subtle changes in amplitude and duration of ECG cannot be deciphered precisely by the naked eye, hence imposing the need for a computer assisted diagnosis tool. In this paper we have automatically classified five types of ECG beats of MIT-BIH arrhythmia database. The five types of beats are Normal (N), Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB), Atrial Premature Contraction (APC) and Ventricular Premature Contraction (VPC). In this work, we have compared the performances of three approaches. The first approach uses principal components of segmented ECG beats, the second approach uses principal components of error signals of linear prediction model, whereas the third approach uses principal components of Discrete Wavelet Transform (DWT) coefficients as features. These features from three approaches were independently classified using feed forward neural network (NN) and Least Square-Support Vector Machine (LS-SVM). We have obtained the highest accuracy using the first approach using principal components of segmented ECG beats with average sensitivity of 99.90%, specificity of 99.10%, PPV of 99.61% and classification accuracy of 98.11%. The system developed is clinically ready to deploy for mass screening programs.
机译:心电图(ECG)是P,QRS,T波,指示心脏的电活动。心电图幅值和持续时间的细微变化无法用肉眼准确辨认出来,因此需要使用计算机辅助诊断工具。在本文中,我们已自动分类了MIT-BIH心律失常数据库的五种心电图节律。搏动的五种类型是正常(N),右束支传导阻滞(RBBB),左束支传导阻滞(LBBB),房性早搏(APC)和室性早搏(VPC)。在这项工作中,我们比较了三种方法的性能。第一种方法使用分段ECG搏动的主成分,第二种方法使用线性预测模型的误差信号的主成分,而第三种方法使用离散小波变换(DWT)系数的主成分作为特征。使用前馈神经网络(NN)和最小二乘支持向量机(LS-SVM)对三种方法的这些特征进行了独立分类。我们使用分割心电图节律的主要成分的第一种方法获得了最高的准确性,其平均敏感性为99.90%,特异性为99.10%,PPV为99.61%,分类准确性为98.11%。开发的系统在临床上已经准备好用于大规模筛查程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号