首页> 外文期刊>Expert Systems with Application >Text categorization methods for automatic estimation of verbal intelligence
【24h】

Text categorization methods for automatic estimation of verbal intelligence

机译:自动估计言语智能的文本分类方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we investigate whether conventional text categorization methods may suffice to infer different verbal intelligence levels. This research goal relies on the hypothesis that the vocabulary that speakers make use of reflects their verbal intelligence levels. Automatic verbal intelligence estimation of users in a spoken language dialog system may be useful when defining an optimal dialog strategy by improving its adaptation capabilities. The work is based on a corpus containing descriptions (i.e. monologs) of a short film by test persons yielding different educational backgrounds and the verbal intelligence scores of the speakers. First, a one-way analysis of variance was performed to compare the mono-logs with the film transcription and to demonstrate that there are differences in the vocabulary used by the test persons yielding different verbal intelligence levels. Then, for the classification task, the mono-logs were represented as feature vectors using the classical TF-IDF weighting scheme. The Naive Bayes, k-nearest neighbors and Rocchio classifiers were tested. In this paper we describe and compare these classification approaches, define the optimal classification parameters and discuss the classification results obtained.
机译:在本文中,我们研究了传统的文本分类方法是否足以推断不同的言语智力水平。该研究目标基于以下假设:说话者使用的词汇反映了他们的言语智力水平。在通过改善语音对白系统的适应能力来定义最佳对白策略时,对口语对白系统中的用户进行自动语音智能估计可能会很有用。该作品基于一个语料库,该语料库包含测试人员对短片的描述(即独白),这些测试人员产生了不同的教育背景和说话者的语言智力得分。首先,进行了单向方差分析,以比较单对数词与电影转录本,并证明测试人员所使用的词汇存在差异,从而产生不同的语言智力水平。然后,对于分类任务,使用经典TF-IDF加权方案将单对数表示为特征向量。测试朴素贝叶斯,k近邻和Rocchio分类器。在本文中,我们描述和比较了这些分类方法,定义了最佳分类参数,并讨论了获得的分类结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号