首页> 外文期刊>Expert systems with applications >A probabilistic integrated object recognition and tracking framework
【24h】

A probabilistic integrated object recognition and tracking framework

机译:概率集成对象识别和跟踪框架

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a probabilistic integrated object recognition and tracking framework called PIORT, together with two specific methods derived from it, which are evaluated experimentally in several test video sequences. The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB color features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods in video sequences taken with a moving camera and including full and partial occlusions of the tracked object.
机译:本文介绍了一种称为PIORT的概率集成对象识别和跟踪框架,以及从中得出的两种特定方法,这些方法在多个测试视频序列中进行了实验评估。所提出的框架的第一步是静态识别模块,该模块从一组局部特征中为图像的每个像素提供类概率。这些概率会动态更新,并提供给能够处理全部和部分遮挡的跟踪决策模块。提出的两种特定方法使用RGB颜色特征,并且在实现的分类器中有所不同:一种是基于最大似然的贝叶斯方法,另一种是基于神经网络的方法。获得的实验结果表明,一方面,当将基于神经网络的方法集成到跟踪框架中时,它们的性能相似,有时甚至优于贝叶斯方法。另一方面,与其他已发布的跟踪方法相比,我们的PIORT方法在移动摄像机拍摄的视频序列中(包括被跟踪对象的全部或部分遮挡)取得了更好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号