首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Experimental Assessment of Probabilistic Integrated Object Recognition and Tracking Methods
【24h】

Experimental Assessment of Probabilistic Integrated Object Recognition and Tracking Methods

机译:概率综合目标识别与跟踪方法的实验评估

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a comparison of two classifiers that are used as a first step within a probabilistic object recognition and tracking framework called PIORT. This first step is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. One of the implemented classifiers is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results show that, on one hand, both classifiers (although they are very different approaches) yield a similar performance when they are integrated within the tracking framework. And on the other hand, our object recognition and tracking framework obtains good results when compared to other published tracking methods in video sequences taken with a moving camera and including total and partial occlusions of the tracked object.
机译:本文介绍了两个分类器的比较,这两个分类器被称为概率对象识别和跟踪框架PIORT中的第一步。第一步是静态识别模块,该模块从一组局部特征中为图像的每个像素提供类概率。一种实现的分类器是基于最大似然的贝叶斯方法,另一种是基于神经网络的。实验结果表明,一方面,两个分类器(尽管它们是非常不同的方法)在集成到跟踪框架中时产生相似的性能。另一方面,与其他已发布的跟踪方法相比,我们的对象识别和跟踪框架在移动摄像机拍摄的视频序列中(包括被跟踪对象的全部和部分遮挡)获得了良好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号