首页> 外文期刊>Expert Systems with Application >Effective fuzzy c-means clustering algorithms for data clustering problems
【24h】

Effective fuzzy c-means clustering algorithms for data clustering problems

机译:用于数据聚类问题的有效模糊c均值聚类算法

获取原文
获取原文并翻译 | 示例

摘要

Clustering is a well known technique in identifying intrinsic structures and find out useful information from large amount of data. One of the most extensively used clustering techniques is the fuzzy c-means algorithm. However, computational task becomes a problem in standard objective function of fuzzy c-means due to large amount of data, measurement uncertainty in data objects. Further, the fuzzy c-means suffer to set the optimal parameters for the clustering method. Hence the goal of this paper is to produce an alternative generalization of FCM clustering techniques in order to deal with the more complicated data; called quadratic entropy based fuzzy c-means. This paper is dealing with the effective quadratic entropy fuzzy c-means using the combination of regularization function, quadratic terms, mean distance functions, and kernel distance functions. It gives a complete framework of quadratic entropy approaching for constructing effective quadratic entropy based fuzzy clustering algorithms. This paper establishes an effective way of estimating memberships and updating centers by minimizing the proposed objective functions. In order to reduce the number iterations of proposed techniques this article proposes a new algorithm to initialize the cluster centers. In order to obtain the cluster validity and choosing the number of clusters in using proposed tech niques, we use silhouette method. First time, this paper segments the synthetic control chart time series directly using our proposed methods for examining the performance of methods and it shows that the proposed clustering techniques have advantages over the existing standard FCM and very recent Clus terM-k-NN in segmenting synthetic control chart time series.
机译:聚类是一种识别内部结构并从大量数据中找到有用信息的众所周知的技术。模糊c均值算法是最广泛使用的聚类技术之一。然而,由于大量数据,数据对象中的测量不确定性,计算任务成为模糊c均值的标准目标函数中的问题。此外,模糊c-均值法难以为聚类方法设置最佳参数。因此,本文的目的是为FCM聚类技术提供一种替代性的概括,以处理更复杂的数据。称为基于二次熵的模糊c均值。本文使用正则化函数,二次项,平均距离函数和核距离函数的组合来处理有效的二次熵模糊c均值。它为构造有效的基于二次熵的模糊聚类算法提供了二次熵逼近的完整框架。本文通过最小化建议的目标函数,建立了一种估算成员资格和更新中心的有效方法。为了减少所提出技术的迭代次数,本文提出了一种新的算法来初始化聚类中心。为了使用提出的技术来获得聚类有效性并选择聚类数量,我们使用了轮廓法。第一次,本文直接使用我们提出的方法对合成控制图时间序列进行分割,以检验方法的性能,结果表明,提出的聚类技术在分割合成区域方面优于现有的标准FCM和最近的Clus terM-k-NN控制图时间序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号