首页> 外文期刊>Expert Systems with Application >Application of Particle Swarm Optimization technique for achieving desired milled surface roughness in minimum machining time
【24h】

Application of Particle Swarm Optimization technique for achieving desired milled surface roughness in minimum machining time

机译:应用粒子群优化技术以最小的加工时间实现所需的铣削表面粗糙度

获取原文
获取原文并翻译 | 示例

摘要

Face milling is a widely used machining operation to produce various components. The finished component depends not only on the dimensional accuracy but also on the surface finish. The present method of selection of machining parameters by trial and error, previous work experience of the process planner and machining hand books are time consuming and very tedious. There is a need to develop a technique that could able to find the optimal machining parameters for the required surface roughness in machining. In this work, experimental investigations are carried out on aluminium material to study the effect of machining parameters such as cutting speed, feed, and depth of cut on the surface roughness and to obtain the desired surface roughness on face milling process. Mathematical model has been developed for surface roughness prediction using Particle Swarm Optimization (PSO) on the basis of experimental results. The model developed for optimization has been validated by confirmation experiments. Physical constraints for both experiment and theoretical approach are the proposed machining parameters and surface roughness. It has been found that the predicted roughness using PSO is in good agreement with the actual roughness.
机译:端面铣削是一种广泛用于加工各种零件的机加工操作。成品部件不仅取决于尺寸精度,还取决于表面光洁度。通过反复试验来选择加工参数的当前方法,过程计划者的先前工作经验以及加工手册都是既费时又繁琐的。需要开发一种能够为加工中所需的表面粗糙度找到最佳加工参数的技术。在这项工作中,对铝材料进行了实验研究,以研究切削速度,进给量和切削深度等加工参数对表面粗糙度的影响,并在端面铣削过程中获得所需的表面粗糙度。在实验结果的基础上,已经开发了使用粒子群优化(PSO)进行表面粗糙度预测的数学模型。为优化而开发的模型已通过确认实验进行了验证。实验和理论方法的物理限制条件是建议的加工参数和表面粗糙度。已经发现使用PSO的预测粗糙度与实际粗糙度非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号