首页> 外文期刊>Expert Systems with Application >A new approach for time series prediction using ensembles of ANFIS models
【24h】

A new approach for time series prediction using ensembles of ANFIS models

机译:使用ANFIS模型集合进行时间序列预测的新方法

获取原文
获取原文并翻译 | 示例

摘要

This paper describes an architecture for ensembles of ANFIS (adaptive network based fuzzy inference system), with emphasis on its application to the prediction of chaotic time series, where the goal is to minimize the prediction error. The time series that we are considered are: the Mackey-Glass, Dow Jones and Mexican stock exchange. The methods used for the integration of the ensembles of ANFIS are: integrator by average and the integrator by weighted average. The performance obtained with this architecture overcomes several standard statistical approaches and neural network models reported in the literature by various researchers. In the experiments we changed the type of membership functions and the desired goal error, thereby increasing the complexity of the training.
机译:本文介绍了ANFIS(基于自适应网络的模糊推理系统)集成的体系结构,重点介绍了其在混沌时间序列预测中的应用,其目的是使预测误差最小。我们考虑的时间序列是:Mackey-Glass,道琼斯和墨西哥证券交易所。用于对ANFIS集合进行积分的方法为:平均积分器和加权平均积分器。通过这种架构获得的性能克服了各种研究人员在文献中报道的几种标准统计方法和神经网络模型。在实验中,我们更改了隶属函数的类型和所需的目标误差,从而增加了训练的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号