首页> 外文期刊>Expert Systems with Application >Comparative analysis of sequence weighting approaches for mining time-interval weighted sequential patterns
【24h】

Comparative analysis of sequence weighting approaches for mining time-interval weighted sequential patterns

机译:挖掘时间间隔加权序列模式的序列加权方法的比较分析

获取原文
获取原文并翻译 | 示例

摘要

Unlike the general sequential pattern mining that considers only the generation order of data elements, mining weighted sequential patterns aims to get more interesting sequential patterns by considering the weights of data elements in a target sequence database in addition to their generation order. In general, for a sequence or a sequential pattern, not only the generation order of data elements but also their generation times and time-intervals are important because they can be helpful in finding more interesting sequential patterns. Applying the mining method of time-interval weighted sequential (TiWS) patterns that has been proposed in our previous work, this paper proposes several sequence weighting approaches to get the time-interval weight of a sequence in mining TiWS patterns for a sequence database, and the effectiveness of each approach in mining TiWS patterns is analyzed through a set of experiments. The proposed sequence weighting approaches may be helpful in obtaining more interesting sequential patterns in mining seauential Datterns for a seauence database.
机译:与仅考虑数据元素生成顺序的常规顺序模式挖掘不同,挖掘加权顺序模式的目的是通过考虑目标序列数据库中数据元素的权重以及它们的生成顺序,来获得更有趣的顺序模式。通常,对于序列或顺序模式,不仅数据元素的生成顺序,而且它们的生成时间和时间间隔都很重要,因为它们可以帮助查找更有趣的顺序模式。运用我们先前工作中提出的时间间隔加权序列(TiWS)模式的挖掘方法,本文提出了几种序列加权方法来获取序列数据库的TiWS模式挖掘中序列的时间间隔权重,以及通过一组实验分析了每种方法在挖掘TiWS模式中的有效性。拟议的序列加权方法可能有助于在挖掘Seauence数据库的Seanential Datterns中获得更多有趣的顺序模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号