首页> 外文期刊>Expert Systems with Application >Efficient content-based image retrieval using Multiple Support Vector Machines Ensemble
【24h】

Efficient content-based image retrieval using Multiple Support Vector Machines Ensemble

机译:使用多个支持向量机集成的基于内容的有效图像检索

获取原文
获取原文并翻译 | 示例

摘要

With the evolution of digital technology, there has been a significant increase in the number of images stored in electronic format. These range from personal collections to medical and scientific images that are currently collected in large databases. Many users and organizations now can acquire large numbers of images and it has been very important to retrieve relevant multimedia resources and to effectively locate matching images in the large databases. In this context, content-based image retrieval systems (CBIR) have become very popular for browsing, searching and retrieving images from a large database of digital images with minimum human intervention. The research community are competing for more efficient and effective methods as CBIR systems may be heavily employed in serving time critical applications in scientific and medical domains. This paper proposes an extremely fast CBIR system which uses Multiple Support Vector Machines Ensemble. We have used Oaubechies wavelet transformation for extracting the feature vectors of images. The reported test results are very promising. Using data mining techniques not only improved the efficiency of the CBIR systems, but they also improved the accuracy of the overall process.
机译:随着数字技术的发展,以电子格式存储的图像数量已大大增加。这些范围从个人收藏到目前在大型数据库中收集的医学和科学图像。现在,许多用户和组织可以获取大量图像,因此检索相关的多媒体资源并有效地在大型数据库中找到匹配的图像非常重要。在这种情况下,基于内容的图像检索系统(CBIR)变得非常流行,可用于以最少的人工干预从大型数字图像数据库中浏览,搜索和检索图像。由于CBIR系统可能在服务于科学和医学领域的时间紧迫性应用中大量使用,因此研究界正在争夺更高效的方法。本文提出了一种使用多个支持向量机集成的超快速CBIR系统。我们已经使用Oaubechies小波变换来提取图像的特征向量。报告的测试结果非常有希望。使用数据挖掘技术不仅提高了CBIR系统的效率,而且还提高了整个过程的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号