首页> 外文期刊>Expert systems with applications >Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques
【24h】

Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques

机译:使用机器学习技术检测柑桔类青霉属真菌引起的腐烂

获取原文
获取原文并翻译 | 示例

摘要

Penicillium fungi are among the main defects that may affect the commercialization of citrus fruits. Economic losses in fruit production may become enormous if an early detection of that kind of fungi is not carried out. That early detection is usually based either on Ultraviolet light carried out manually. This work presents a new approach based on hyperspectral imagery for defect segmentation. Both the physical device and the data processing (geometric corrections and band selection) are presented. Achieved results using classifiers based on Artificial Neural Networks and Decision Trees show an accuracy around 98%; it shows up the suitability of the proposed approach.
机译:青霉菌是可能影响柑橘类水果商业化的主要缺陷之一。如果不及早发现这种真菌,水果生产中的经济损失可能会变得巨大。该早期检测通常基于手动执行的紫外线。这项工作提出了一种基于高光谱图像的缺陷分割新方法。同时介绍了物理设备和数据处理(几何校正和波段选择)。使用基于人工神经网络和决策树的分类器获得的结果显示出约98%的准确性;它表明了该方法的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号