首页> 外文期刊>Expert systems with applications >Sleep-wake stages classification and sleep efficiency estimation using single-lead electrocardiogram
【24h】

Sleep-wake stages classification and sleep efficiency estimation using single-lead electrocardiogram

机译:使用单导联心电图的睡眠-觉醒阶段分类和睡眠效率估计

获取原文
获取原文并翻译 | 示例

摘要

Detecting sleep-wake stages is of paramount importance in the study of sleep. Conventional methods of sleep-wake stages classification are based on processing physiological signals such as, electroencephalogram (KEG), electrooculogram (EOG) and electromyogram (EMG) that are, mainly, recorded in hospitals using polysomnography (PSG) systems. In this paper, we present an automatic sleep-wake stages classifier method using a single-lead electrocardiogram (ECG). Then, an important sleep quality marker called sleep efficiency is measured using classifier results. The method is based on the extraction, according to three methods, of several features from the heart rate series (RR series). The three methods are, the heart rate variability (HRV) and the detrended fluctuation analysis (DFA) and a method we propose based on the calculation of local energy of detrended profile of RR series; inspired by DFA we call it windowed DFA (WDFA). A subject-specific scheme was adopted, where a part (around 20%) of a subject's data was used to train the classifier and the remaining part (around 80%) is used for the classification, two sets of features were used, i.e., 12 features, initially, and the optimal set of features (10 features in this paper) selected by the support vector machine recursive feature elimination (SVM-RFE) system. The method was tested on the MIT/BIH Polysomnographic Database (MITBPD) using support vector machine (SVM) for training and classification. A mean classification accuracy of 79.31% (12 features, Cohen's kappa value K = 0.41) and 79.99% (10 features, K=0.43) are reported. Finally, the measure of sleep efficiency was made using the classification results and compared to the actual sleep efficiency values; an average error of 4.52% and 4.64% are reported for the case of 12 features and 10 features, respectively. The method showed good potential for detecting changes in time series and in the sleep-wake stages classification, which prove that an approach with a single ECG lead can be sufficient to estimate an important sleep quality marker which is the sleep efficiency.
机译:在睡眠研究中,检测睡眠-觉醒阶段至关重要。常规的睡眠-醒觉阶段分类方法基于处理生理信号,例如脑电图(KEG),眼电图(EOG)和肌电图(EMG),这些信号主要在医院中使用多导睡眠图(PSG)系统记录。在本文中,我们提出了一种使用单导联心电图(ECG)的自动睡眠-觉醒阶段分类器方法。然后,使用分类器结果测量称为睡眠效率的重要睡眠质量标记。该方法基于根据三种方法从心率序列(RR系列)中提取几个特征的基础。这三种方法分别是心率变异性(HRV)和去趋势波动分析(DFA),以及基于RR系列去趋势分布的局部能量计算而提出的一种方法;受DFA启发,我们将其称为窗口DFA(WDFA)。采用了针对特定学科的方案,其中,受试者数据的一部分(约20%)用于训练分类器,其余部分(约80%)用于分类,使用了两组特征,即支持向量机递归特征消除(SVM-RFE)系统首先选择了12个特征,然后选择了最佳特征集(本文中有10个特征)。使用支持向量机(SVM)在MIT / BIH多导睡眠图数据库(MITBPD)上对该方法进行了测试和分类。报告的平均分类准确度为79.31%(12个特征,科恩kappa值K = 0.41)和79.99%(10个特征,K = 0.43)。最后,使用分类结果对睡眠效率进行测量,并将其与实际睡眠效率值进行比较;对于12个要素和10个要素,平均误差分别为4.52%和4.64%。该方法显示出检测时间序列和睡眠-觉醒阶段分类中的变化的良好潜力,这证明具有单个ECG导联的方法足以估计重要的睡眠质量标志物,即睡眠效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号