首页> 外文期刊>Expert systems with applications >Global optimization of an optical chaotic system by Chaotic Multi Swarm Particle Swarm Optimization
【24h】

Global optimization of an optical chaotic system by Chaotic Multi Swarm Particle Swarm Optimization

机译:混沌多群粒子群算法对光学混沌系统的全局优化

获取原文
获取原文并翻译 | 示例

摘要

The control and estimation of unknown parameters of chaotic systems are a daunting task till date from the perspective of nonlinear science. Inspired from ecological co-habitation, we propose a variant of Particle Swarm Optimization (PSO), known as Chaotic Multi Swarm Particle Swarm Optimization (CMS-PSO), by modifying the generic PSO with the help of the chaotic sequence for multi-dimension unknown parameter estimation and optimization by forming multiple cooperating swarms. This achieves load balancing by delegating the global optimizing task to concurrently operating swarms. We apply it successfully in estimating the unknown parameters of an autonomous chaotic laser system derived from Maxwell-Bloch equations. Numerical results and comparison demonstrate that for the given system parameters, CMS-PSO can identify the optimized parameters effectively evolving at each iteration to attain the pareto optimal solution with small population size and enhanced convergence speedup.
机译:从非线性科学的角度看,迄今为止,混沌系统的未知参数的控制和估计是一项艰巨的任务。受生态共居的启发,我们提出了一种粒子群优化(PSO)的变体,称为混沌多群粒子群优化(CMS-PSO),该方法是借助混沌序列修改多维PSO,以解决未知的多维问题通过形成多个协作群来进行参数估计和优化。通过将全局优化任务委派给同时运行的集群,可以实现负载平衡。我们成功地将其应用到了从麦克斯韦-布洛克方程推导的自主混沌激光系统的未知参数估计中。数值结果和比较结果表明,对于给定的系统参数,CMS-PSO可以识别出每次迭代有效演化的优化参数,从而以较小的总体规模和更高的收敛速度获得了最优解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号