首页> 外文期刊>Expert Systems with Application >Wright-Fisher multi-strategy trust evolution model with white noise for Internetware
【24h】

Wright-Fisher multi-strategy trust evolution model with white noise for Internetware

机译:互联网软件中带有白噪声的Wright-Fisher多策略信任演化模型

获取原文
获取原文并翻译 | 示例

摘要

A trust evolution model plays an important role in ensuring and predicting the behaviors of entities in Internetware system. Most of the current trust evolution models almost adopt expertise or average weight method to calculate entities' trust incomes, and focus on two strategies ('full trust', 'full distrust') to analyze trust behaviors. In addition, the researches on dynamics evolution models fail to consider the factor of noise, and cannot effectively prevent free-riding phenomenon. In this paper, a trust measurement based on Quality of Service (QoS) and fuzzy theory by considering timeliness of history data is proposed to improve the accuracy of trust measurement results. Furthermore, a trust evolution model based on Wright-Fisher and the evolutionary game theory is proposed. This model considers multi-strategy and noise problems to improve the accuracy of prediction and adaptability of model in complex networks. Meanwhile, in order to solve the free-riding problem, and improve the trust degree of a system, an incentive mechanism is established based on evolutionary game theory to inspire entities to select trust strategies. The simulation results show that this model has good adaptability and accuracy. In addition, this model can effectively improve network efficiency, and make trust income reach an optimal value, so as to improve trust degree of a system.
机译:信任演化模型在确保和预测Internetware系统中实体的行为方面起着重要作用。当前大多数信任演化模型几乎都采用专业知识或平均权重方法来计算实体的信任收入,并着重于两种策略(“完全信任”,“完全不信任”)来分析信任行为。另外,动力学演化模型的研究没有考虑噪声因素,不能有效地防止搭便车现象。为了提高信任度测量结果的准确性,提出了一种基于服务质量(QoS)和模糊理论的信任度测量方法,该方法考虑了历史数据的及时性。此外,提出了一种基于赖特·费舍尔和演化博弈论的信任演化模型。该模型考虑了多策略和噪声问题,以提高模型在复杂网络中的预测准确性和适应性。同时,为了解决搭便车问题,提高系统的信任度,建立了基于演化博弈论的激励机制,以激励实​​体选择信任策略。仿真结果表明,该模型具有良好的适应性和准确性。另外,该模型可以有效地提高网络效率,并使信任收益达到最优值,从而提高系统的信任度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号