首页> 外文期刊>Expert Systems with Application >Using micro-documents for feature selection: The case of ordinal text classification
【24h】

Using micro-documents for feature selection: The case of ordinal text classification

机译:使用微型文档进行特征选择:序数文本分类的情况

获取原文
获取原文并翻译 | 示例

摘要

Most popular feature selection methods for text classification such as information gain (also known as "mutual information"), chi-square, and odds ratio, are based on binary information indicating the presence/absence of the feature (or "term") in each training document. As such, these methods do not exploit a rich source of information, namely, the information concerning how frequently the feature occurs in the training document (term frequency). In order to overcome this drawback, when doing feature selection we logically break down each training document of length k into k training "micro-documents", each consisting of a single word occurrence and endowed with the same class information of the original training document. This move has the double effect of (a) allowing all the original feature selection methods based on binary information to be still straightforwardly applicable, and (b) making them sensitive to term frequency information. We study the impact of this strategy in the case of ordinal text classification, a type of text classification dealing with classes lying on an ordinal scale, and recently made popular by applications in customer relationship management, market research, and Web 2.0 mining. We run experiments using four recently introduced feature selection functions, two learning methods of the support vector machines family, and two large datasets of product reviews. The experiments show that the use of this strategy substantially improves the accuracy of ordinal text classification.
机译:用于文本分类的最流行的特征选择方法,例如信息增益(也称为“互信息”),卡方和比值比,是基于表示特征中是否存在特征(或“项”)的二进制信息。每个培训文件。因此,这些方法没有利用丰富的信息源,即有关特征在训练文档中出现的频率(术语频率)的信息。为了克服此缺点,在进行特征选择时,我们将每个长度为k的训练文档逻辑上分解为k个训练“微型文档”,每个微型文档由一个单词出现组成,并赋予原始训练文档相同的类信息。此举具有双重作用:(a)允许所有直接使用基于二进制信息的原始特征选择方法,以及(b)使它们对术语频率信息敏感。我们研究了这种策略在有序文本分类(一种处理有序规模的类的文本分类)情况下的影响,并且最近在客户关系管理,市场研究和Web 2.0挖掘中受到了广泛的应用。我们使用四个最近引入的特征选择功能,两种支持向量机系列的学习方法以及两个大型产品评论数据集进行实验。实验表明,这种策略的使用大大提高了序数文本分类的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号