首页> 外文期刊>Expert Systems with Application >A low-cost INS/GPS integration methodology based on random forest regression
【24h】

A low-cost INS/GPS integration methodology based on random forest regression

机译:基于随机森林回归的低成本INS / GPS集成方法

获取原文
获取原文并翻译 | 示例

摘要

This paper, for the first time, introduces a random forest regression based Inertial Navigation System (INS) and Global Positioning System (GPS) integration methodology to provide continuous, accurate and reliable navigation solution. Numerous techniques such as those based on Kalman filter (KF) and artificial intelligence approaches exist to fuse the INS and GPS data. The basic idea behind these fusion techniques is to model the INS error during GPS signal availability. In the case of outages, the developed model provides an INS error estimates, thereby maintaining the continuity and improving the navigation solution accuracy. KF based approaches possess several inadequacies related to sensor error model, immunity to noise, and computational load. Alternatively, neural network (NN) proposed to overcome KF limitations works unsatisfactorily for low-cost INS, as they suffer from poor generalization capability due to the presence of high amount of noise. In this study, random forest regression has shown to effectively model the highly non-linear INS error due to its improved generalization capability. To evaluate the proposed method effectiveness in bridging the period of GPS outages, four simulated GPS outages are considered over a real field test data. The proposed methodology illustrates a significant reduction in the positional error by 24-56%.
机译:本文首次介绍了一种基于随机森林回归的惯性导航系统(INS)和全球定位系统(GPS)集成方法,以提供连续,准确和可靠的导航解决方案。存在许多技术,例如基于卡尔曼滤波器(KF)和人工智能方法的技术,以融合INS和GPS数据。这些融合技术背后的基本思想是在GPS信号可用性期间对INS误差进行建模。在出现故障的情况下,开发的模型可以提供INS错误估计,从而保持连续性并提高导航解决方案的准确性。基于KF的方法在传感器误差模型,抗噪性和计算负荷方面存在几个不足之处。备选地,提出的克服KF限制的神经网络(NN)对于低成本INS不能令人满意地工作,因为由于存在大量噪声,它们的综合能力很差。在这项研究中,随机森林回归已显示出可以改善高度非线性INS误差的模型,这是由于其提高了泛化能力。为了评估所建议的方法在桥接GPS中断期间的有效性,在实际测试数据上考虑了四个模拟GPS中断。所提出的方法论表明位置误差显着减少了24-56%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号