首页> 外文期刊>Expert Systems with Application >Parameter estimation of a pressure swing adsorption model for air separation using multi-objective optimisation and support vector regression model
【24h】

Parameter estimation of a pressure swing adsorption model for air separation using multi-objective optimisation and support vector regression model

机译:基于多目标优化和支持向量回归模型的空分变压吸附模型参数估计

获取原文
获取原文并翻译 | 示例

摘要

In order to successfully estimate parameters of a numerical model, multiple criteria should be considered. Multi-objective Differential Evolution (MODE) and Multi-objective Genetic Algorithm (MOGA) have proved effective in numerous such applications, where most of the techniques relying on the condition of Pareto efficiency to compare different solutions. We describe the performance of two population based search algorithms (Nondominated Sorting Differential Evolution (NSDE) and Nondominated Sorting Genetic Algorithm (NGAII)) when applied to parameter estimation of a pressure swing adsorption (PSA) model. Full PSA mode is a complicated dynamic processing involving all transfer phenomena (mass, heat and momentum transfer) and has proven to be successful in a wide of applications. The limitation of using full PSA models is their expensive computational requirement. The parameter estimation analysis usually needs to run the numerical model and evaluate the performance thousands of times. However, in real world applications, there is simply not enough time and resources to perform such a huge number of model runs. In this study, a computational framework, known as v-support vector regression (v-SVR) PSA model, is presented for solving computationally expensive simulation problems. Formulation of an automatic parameter estimation strategy for the PSA model is outline. The simulations show that the NSDE is able to find better spread of solutions and better convergence near the true Pareto-optimal front compared to NSGAII-one elitist MOGA that pays special attention to creating a diverse Pareto-optimal front.
机译:为了成功地估计数值模型的参数,应考虑多个标准。事实证明,多目标差分进化(MODE)和多目标遗传算法(MOGA)在众多此类应用中是有效的,其中大多数技术都依赖帕累托效率的条件来比较不同的解决方案。当描述应用于变压吸附(PSA)模型的参数估计时,我们描述了两种基于人口的搜索算法(非排序排序进化算法(NSDE)和非主导排序遗传算法(NGAII))的性能。完全PSA模式是涉及所有传递现象(质量,热量和动量传递)的复杂动态处理,并且已被证明在广泛的应用中都是成功的。使用完整PSA模型的局限性在于它们昂贵的计算需求。参数估计分析通常需要运行数值模型并评估性能数千次。但是,在实际应用中,根本没有足够的时间和资源来执行如此大量的模型运行。在这项研究中,提出了一种计算框架,称为v支持向量回归(v-SVR)PSA模型,用于解决计算量大的仿真问题。概述了PSA模型的自动参数估计策略的制定。仿真显示,与NSGAII一级精英MOGA相比,NSDE能够在真正的帕累托最优前沿附近找到更好的解散和更好的收敛性,后者特别关注创建多样化的帕累托最优前沿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号