首页> 外文期刊>Expert Systems with Application >Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic
【24h】

Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic

机译:基于模糊逻辑的动态参数自适应PSO的模糊分类系统优化设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper a new method for dynamic parameter adaptation in particle swarm optimization (PSO) is proposed. PSO is a metaheuristic inspired in social behaviors, which is very useful in optimization problems. In this paper we propose an improvement to the convergence and diversity of the swarm in PSO using fuzzy logic. Simulation results show that the proposed approach improves the performance of PSO. First, benchmark mathematical functions are used to illustrate the feasibility of the proposed approach. Then a set of classification problems are used to show the potential applicability of the fuzzy parameter adaptation of PSO.
机译:本文提出了一种新的粒子群优化(PSO)动态参数自适应方法。 PSO是一种在社会行为中受到启发的元启发法,对于优化问题非常有用。在本文中,我们提出了使用模糊逻辑对粒子群算法中种群收敛和多样性的一种改进。仿真结果表明,该方法可以提高PSO的性能。首先,使用基准数学函数来说明该方法的可行性。然后使用一组分类问题来说明PSO的模糊参数自适应的潜在适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号