首页> 外文期刊>Expert Systems with Application >SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey
【24h】

SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey

机译:SOM集合用于无监督的离群值分析。在盖亚天文测量中的异常值识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Gaia is an ESA cornerstone astronomical mission that will observe with unprecedented precision positions, distances, space motions, and many physical properties of more than one billion objects in our Galaxy and beyond. It will observe all objects in the sky in the visible magnitude range from 6 to 20, up to approximately 10~9 sources. An international scientific consortium, the Gaia Data Processing and Analysis Consortium (Gaia DPAC), has organized itself in several coordination units, with the aim, among others, of addressing the work of classifying the observed astronomical sources, using both supervised and unsupervised classification algorithms. This work focuses on the analysis of classification outliers by means of unsupervised classification. We present a novel method to combine SOMs trained with independent features that are calculated from spectrophotometry. The method as described here can help to improve the models used for the supervised classification of astronomical sources. Furthermore, it allows for data exploration and knowledge discovery in huge astronomical databases such as the upcoming Gaia mission.
机译:盖亚(Gaia)是欧空局(ESA)的基础天文任务,它将以前所未有的精度观测位置,距离,空间运动以及银河系内外十亿多个物体的许多物理特性。它将观测天空中所有可见物体(范围从6到20),直至大约10〜9个源。一个国际科学联盟,即盖亚数据处理和分析联盟(Gaia DPAC),已将自己组织成几个协调部门,目的是解决使用监督和非监督分类算法对观测天文源进行分类的工作。 。这项工作着重于通过无监督分类的分类离群值分析。我们提出了一种新颖的方法,将经过训练的SOM与通过分光光度法计算出的独立特征相结合。此处描述的方法可以帮助改进用于天文源监督分类的模型。此外,它还允许在巨大的天文数据库(例如即将进行的Gaia任务)中进行数据探索和知识发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号