首页> 外文期刊>Expert Systems with Application >Semantic similarity measures for enhancing information retrieval in folksonomies
【24h】

Semantic similarity measures for enhancing information retrieval in folksonomies

机译:语义相似度增强民俗分类信息检索的措施

获取原文
获取原文并翻译 | 示例

摘要

Collaborative tagging systems, also known as folksonomies, enable a user to annotate various web resources with a free set of tags for sharing and searching purposes. Tags in a folksonomy reflect users' collaborative cognition about information. Tags play an important role in a folksonomy as a means of indexing information to facilitate search and navigation of resources. However, the semantics of the tags, and therefore the semantics of the resources, are neither known nor explicitly stated. It is therefore difficult for users to find related resources due to the absence of a consistent semantic meaning among tags. The shortage of relevant tags increases data sparseness and decreases the rate of information extraction with respect to user queries. Defining semantic relationships between tags, resources, and users is an important research issue for the retrieval of related information from folksonomies. In this research, a method for finding semantic relationships among tags is proposed. The present study considers not only the pairwise relationships between tags, resources, and users, but also the relationships among all three. Experimental results using real datasets from Flickr and Del.icio.us show that the method proposed here is more effective than previous methods such as LCH, JCN, and UN in finding semantic relationships among tags in a folksonomy.
机译:协作标记系统(也称为民俗分类法)使用户能够使用一组免费的标记来注释各种Web资源,以进行共享和搜索。民间疗法中的标签反映了用户对信息的协作认知。标签在民俗疗法中起着重要的作用,它是一种索引信息的方式,以方便资源的搜索和导航。但是,既不知道也不明确声明标签的语义以及资源的语义。因此,由于标签之间缺乏一致的语义含义,用户难以找到相关资源。相关标签的短缺增加了数据稀疏性,并降低了有关用户查询的信息提取率。定义标签,资源和用户之间的语义关系是从民间分类法中检索相关信息的重要研究问题。在这项研究中,提出了一种在标签之间寻找语义关系的方法。本研究不仅考虑标签,资源和用户之间的成对关系,而且考虑这三者之间的关系。使用来自Flickr和Del.icio.us的真实数据集的实验结果表明,此处提出的方法比以前的方法(如LCH,JCN和UN)更有效地找到了民用分类法中标签之间的语义关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号