首页> 外文期刊>Expert Systems with Application >A semantic similarity method based on information content exploiting multiple ontologies
【24h】

A semantic similarity method based on information content exploiting multiple ontologies

机译:一种基于信息内容的多种本体的语义相似度方法

获取原文
获取原文并翻译 | 示例

摘要

The quantification of the semantic similarity between terms is an important research area that configures a valuable tool for text understanding. Among the different paradigms used by related works to compute semantic similarity, in recent years, information theoretic approaches have shown promising results by computing the information content (IC) of concepts from the knowledge provided by ontologies. These approaches, however, are hampered by the coverage offered by the single input ontology. In this paper, we propose extending IC-based similarity measures by considering multiple ontologies in an integrated way. Several strategies are proposed according to which ontology the evaluated terms belong. Our proposal has been evaluated by means of a widely used benchmark of medical terms and MeSH and SNOMED CT as ontologies. Results show an improvement in the similarity assessment accuracy when multiple ontologies are considered.
机译:术语之间语义相似性的量化是一个重要的研究领域,为文本理解配置了有价值的工具。在相关作品用来计算语义相似性的不同范例中,近年来,信息理论方法通过从本体提供的知识中计算概念的信息内容(IC)而显示出令人鼓舞的结果。但是,这些方法受到单个输入本体提供的覆盖范围的阻碍。在本文中,我们建议通过综合考虑多种本体来扩展基于IC的相似性度量。根据评估术语所属的本体,提出了几种策略。我们的建议已通过广泛使用的医学术语基准以及MeSH和SNOMED CT作为本体进行了评估。结果表明,当考虑多个本体时,相似性评估的准确性有所提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号