首页> 外文期刊>Expert Systems with Application >A novel approach for traffic accidents sanitary resource allocation based on multi-objective genetic algorithms
【24h】

A novel approach for traffic accidents sanitary resource allocation based on multi-objective genetic algorithms

机译:基于多目标遗传算法的交通事故卫生资源分配新方法

获取原文
获取原文并翻译 | 示例

摘要

The development of communication technologies integrated in vehicles allows creating new protocols and applications to improve assistance in traffic accidents. Combining this technology with intelligent systems will permit to automate most of the decisions needed to generate the appropriate sanitary resource sets, thereby reducing the time from the occurrence of the accident to the stabilization and hos-pitalization of the injured passengers. However, generating the optimal allocation of sanitary resources is not an easy task, since there are several objectives that are mutually exclusive, such as assistance improvement, cost reduction, and balanced resource usage. In this paper, we propose a novel approach for the sanitary resources allocation in traffic accidents. Our approach is based on the use of multi-objective genetic algorithms, and it is able to generate a list of optimal solutions accounting for the most representative factors. The inputs to our model are: (i) the accident notification, which is obtained through vehicular communication systems, and (ii) the severity estimation for the accident, achieved through data mining. We evaluate our approach under a set of vehicular scenarios, and the results show that a memetic version of the NSGA-II algorithm was the most effective method at locating the optimal resource set, while maintaining enough variability in the solutions to allow applying different resource allocation policies.
机译:车辆中集成的通信技术的发展允许创建新的协议和应用程序,以改善对交通事故的援助。将该技术与智能系统相结合将使生成适当的卫生资源集所需的大多数决策自动化,从而减少了从事故发生到伤亡乘客稳定和接待的时间。但是,要实现卫生资源的最佳分配并非易事,因为有几个相互排斥的目标,例如改善援助,降低成本和平衡资源使用。在本文中,我们提出了一种用于交通事故中卫生资源分配的新方法。我们的方法基于多目标遗传算法的使用,并且能够生成考虑到最具代表性的因素的最优解决方案列表。我们模型的输入是:(i)通过车辆通信系统获得的事故通知,以及(ii)通过数据挖掘实现的事故严重性估算。我们在一组车辆场景下评估了我们的方法,结果表明,模态版本的NSGA-II算法是查找最佳资源集的最有效方法,同时在解决方案中保持足够的可变性以允许应用不同的资源分配政策。

著录项

  • 来源
    《Expert Systems with Application》 |2013年第1期|323-336|共14页
  • 作者单位

    Computer Science and System Engineering Department (DIIS), Campus of Teruel, University of Zaragoza, Ciudad Escolar s, 44003 Teruel, Spain;

    Computer Science and System Engineering Department (DIIS), Campus of Teruel, University of Zaragoza, Ciudad Escolar s, 44003 Teruel, Spain;

    Computer Science and System Engineering Department (DIIS), Campus of Teruel, University of Zaragoza, Ciudad Escolar s, 44003 Teruel, Spain;

    Computer Engineering Department (DISCA), Universitat Politicnica de Valencia, Camino de Vera s, 46022 Valencia, Spain;

    Computer Engineering Department (DISCA), Universitat Politicnica de Valencia, Camino de Vera s, 46022 Valencia, Spain;

    Computer Engineering Department (DISCA), Universitat Politicnica de Valencia, Camino de Vera s, 46022 Valencia, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    resource allocation; traffic accidents assistance; multi-objective genetic algorithms;

    机译:资源分配;交通事故援助;多目标遗传算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号