首页> 外文期刊>Expert Systems with Application >Histogram-based gravitational optimization algorithm on single MR modality for automatic brain lesion detection and segmentation
【24h】

Histogram-based gravitational optimization algorithm on single MR modality for automatic brain lesion detection and segmentation

机译:基于直方图的单MR模式重力优化算法,用于脑部病变自动检测和分割

获取原文
获取原文并翻译 | 示例

摘要

Magnetic resonance imaging (MRI) is a very effective medical imaging technique for the clinical diagnosis and monitoring of neurological disorders. Because of intensity similarities between brain lesions and normal tissues, muitispectral MRI modalities are usually applied for brain lesion detection. However, the time and cost restrictions for collecting multi-spectral MRI, and the issue of possible errors from registering multiple MR images necessitate developing an automatic lesion detection approach that can detect lesions using a single anatomical MRI modality. In this paper, an automatic algorithm for brain stroke and tumor lesion detection and segmentation using single-spectral MRI is presented. The proposed algorithm, called histogram-based gravitational optimization algorithm (HGOA), is a novel intensity-based segmentation technique, which applies enhanced gravitational optimization algorithm on histogram analysis results. The mathematical descriptions as well as the convergence criteria of the developed optimization algorithm are presented in detail. Using this algorithm, brain is segmented into different number of regions, which will be labeled as lesion or healthy. Here, the ischemic stroke lesions and tumor lesions are segmented with 91.5% and 88.1% accuracy, respectively.
机译:磁共振成像(MRI)是一种非常有效的医学成像技术,可用于临床诊断和监测神经系统疾病。由于脑部病变与正常组织之间的强度相似性,因此通常将多发性胸膜MRI模式应用于脑部病变检测。然而,收集多光谱MRI的时间和成本限制以及配准多个MR图像可能产生的错误问题使得必须开发一种可以使用单个解剖MRI形式检测病变的自动病变检测方法。本文提出了一种使用单光谱MRI的脑卒中和肿瘤病变自动检测和分割算法。所提出的算法称为基于直方图的重力优化算法(HGOA),是一种基于强度的新型分割技术,将增强的重力优化算法应用于直方图分析结果。详细介绍了开发的优化算法的数学描述以及收敛准则。使用此算法,大脑被分为不同数量的区域,这些区域将被标记为病变或健康。在此,将缺血性中风病变和肿瘤病变分别细分为91.5%和88.1%的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号