首页> 外文期刊>Expert Systems with Application >Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection
【24h】

Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection

机译:遗传算法特征选择的自适应特征图像检索与分类研究

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a genetic algorithm feature selection (GAFS) for image retrieval systems and image classification. Two texture features of adaptive motifs co-occurrence matrix (AMCOM) and gradient histogram for adaptive motifs (GHAM) and color feature of an adaptive color histogram for K-means (ACH) were used in this paper. In this paper, the feature selections have adopted sequential forward selection (SFS), sequential backward selection (SBS), and generic algorithms feature selection (GAFS). Image retrieval and classification performance mainly build from three features: ACH, AMCOM and GHAM, where the classification system is used for two-class SVM classification. In the experimental results, we can find that all the methods regarding feature extraction mentioned in this study can contribute to better results with regard to image retrieval and image classification. The GAFS can provide a more robust solution at the expense of increased computational effort. By applying GAFS to image retrieval systems, not only could the number of features be effectively reduced, but higher image retrieval accuracy is elicited.
机译:本文提出了一种用于图像检索系统和图​​像分类的遗传算法特征选择算法。本文使用了自适应基序共现矩阵(AMCOM)和自适应基序的梯度直方图(GHAM)的两个纹理特征以及适用于K均值(ACH)的自适应颜色直方图的颜色特征。在本文中,特征选择采用了顺序前向选择(SFS),顺序后向选择(SBS)和通用算法特征选择(GAFS)。图像检索和分类性能主要由ACH,AMCOM和GHAM三个特征建立,其中分类系统用于两类SVM分类。在实验结果中,我们发现本研究中提到的所有与特征提取有关的方法都可以为图像检索和图像分类带来更好的结果。 GAFS可以提供​​更强大的解决方案,但会增加计算工作量。通过将GAFS应用于图像检索系统,不仅可以有效减少特征数量,而且可以提高图像检索精度。

著录项

  • 来源
    《Expert Systems with Application》 |2014年第15期|6611-6621|共11页
  • 作者单位

    Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, No. 129, Sec. 3, Sanmin Rd., Taichung, Taiwan, ROC;

    Department of Electrical Engineering, National Chung Hsing University, No. 250 Kuo Kuang Rd., Taichung, Taiwan, ROC;

    Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, No. 129, Sec. 3, Sanmin Rd., Taichung, Taiwan, ROC;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Color feature; Texture features; Genetic algorithms; Feature selection; Support vector machine;

    机译:颜色特征;纹理特征;遗传算法;功能选择;支持向量机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号