首页> 外文期刊>Expert Systems with Application >Modeling and verifying probabilistic Multi-Agent Systems using knowledge and social commitments
【24h】

Modeling and verifying probabilistic Multi-Agent Systems using knowledge and social commitments

机译:使用知识和社会承诺对概率多智能体系统进行建模和验证

获取原文
获取原文并翻译 | 示例

摘要

Multi-Agent Systems (MASs) have long been modeled through knowledge and social commitments independently. In this paper, we present a new method that merges the two concepts to model and verify MASs in the presence of uncertainty. To express knowledge and social commitments simultaneously in uncertain settings, we define a new multi-modal logic called Probabilistic Computation Tree Logic of Knowledge and Commitments (PCTL~(kc) in short) which combines two existing probabilistic logics namely, probabilistic logic of knowledge PCTLK and probabilistic logic of commitments PCTLC. To model stochastic MASs, we present a new version of interpreted systems that captures the probabilistic behavior and accounts for the communication between interacting components. Then, we introduce a new probabilistic model checking procedure to check the compliance of target systems against some desirable properties written in PCTL~(kc) and report the obtained verification results. Our proposed model checking technique is reduction-based and consists in transforming the problem of model checking PCTL~(kc) into the problem of model checking a well established logic, namely PCTL. So doing provides us with the privilege of re-using the PRISM model checker to implement the proposed model checking approach. Finally, we demonstrate the effectiveness of our approach by presenting a real case study. This framework can be considered as a step forward towards closing the gap of capturing interactions between knowledge and social commitments in stochastic agent-based systems.
机译:长期以来,多智能系统(MAS)都是通过知识和社会承诺独立地建模的。在本文中,我们提出了一种新方法,该方法将两个概念融合在一起以在存在不确定性的情况下对MAS进行建模和验证。为了在不确定的环境中同时表达知识和社会承诺,我们定义了一种新的多模式逻辑,称为知识和承诺的概率计算树逻辑(简称PCTL〜(kc)),它结合了两个现有的概率逻辑,即知识的概率逻辑PCTLK PCTLC承诺的概率逻辑。为了对随机MAS建模,我们提出了一种解释系统的新版本,该系统捕获了概率行为并解释了交互组件之间的通信。然后,我们引入了一种新的概率模型检查程序,以检查目标系统是否符合PCTL〜(kc)中编写的某些理想属性,并报告获得的验证结果。我们提出的模型检查技术是基于归约的,它包括将模型检查PCTL〜(kc)问题转化为模型检查问题,即一个完善的逻辑,即PCTL。因此,这样做为我们提供了重用PRISM模型检查器以实现建议的模型检查方法的特权。最后,我们通过提供一个真实的案例研究来证明我们的方法的有效性。该框架可被视为朝着缩小基于随机主体的系统中捕获知识与社会承诺之间的相互作用的差距迈出的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号