首页> 外文期刊>Expert Systems with Application >Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS
【24h】

Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS

机译:使用ANN,LS-SVR,Fuzzy Logic和ANFIS对亚热带气候下的每日蒸发量进行建模

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the abilities of Artificial Neural Networks (ANN), Least Squares - Support Vector Regression (LS-SVR), Fuzzy Logic, and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques to improve the accuracy of daily pan evaporation estimation in sub-tropical climates. Meteorological data from the Karso watershed in India (consisting of 3801 daily records from the year 2000 to 2010) were used to develop and test the models for daily pan evaporation estimation. The measured meteorological variables include daily observations of rainfall, minimum and maximum air temperatures, minimum and maximum humidity, and sunshine hours. Prior to model development, the Gamma Test (GT) was used to derive estimates of the noise variance for each input-output set in order to identify the most useful predictors for use in the machine learning approaches used in this study. The ANN models consisted of feed forward backpropagation (FFBP) models with Bayesian Regularization (BR), along with the Levenberg-Marquardt (LM) algorithm. A comparison was made between the estimates provided by the ANN, LS-SVR, Fuzzy Logic, and ANFIS models. The empirical Hargreaves and Samani method (HGS), as well as the Stephens-Stewart (SS) method, were also considered for comparison with the newer machine learning methods. The Root Mean Square Error (RMSE) and Correlation Coefficient (CORR) were the statistical performance indices that were used to evaluate the accuracy of the various models. Based on the comparison, it was found that the Fuzzy Logic and LS-SVR approaches can be employed successfully in modeling the daily evaporation process from the available climatic data. In addition, results showed that the machine learning models outperform the traditional HGS and SS empirical methods.
机译:本文研究了人工神经网络(ANN),最小二乘支持向量回归(LS-SVR),模糊逻辑和自适应神经模糊推理系统(ANFIS)技术的功能,以提高子平台中每日蒸发量估算的准确性热带气候。来自印度Karso流域的气象数据(从2000年到2010年,每天有3801条记录)被用于开发和测试每日平底锅蒸发量估算的模型。测得的气象变量包括每天的降雨量,最低和最高气温,最低和最高湿度以及日照时间的观测值。在模型开发之前,使用伽玛测试(GT)得出每个输入-输出集合的噪声方差的估计,以便确定用于本研究中的机器学习方法的最有用的预测器。 ANN模型由具有贝叶斯正则化(BR)的前馈反向传播(FFBP)模型以及Levenberg-Marquardt(LM)算法组成。在ANN,LS-SVR,模糊逻辑和ANFIS模型提供的估计之间进行了比较。还考虑将经验性的Hargreaves和Samani方法(HGS)以及Stephens-Stewart(SS)方法与较新的机器学习方法进行比较。均方根误差(RMSE)和相关系数(CORR)是统计性能指标,用于评估各种模型的准确性。在比较的基础上,发现模糊逻辑和LS-SVR方法可以成功地用于根据可用气候数据对每日蒸发过程进行建模。此外,结果表明,机器学习模型优于传统的HGS和SS经验方法。

著录项

  • 来源
    《Expert Systems with Application》 |2014年第11期|5267-5276|共10页
  • 作者单位

    Dept. of Civil Engineering, Indian Institute of Technology, Guwahati 781039, India;

    Dept. of Water Resources Development Management, Indian Institute of Technology, Roorkee 247667, India;

    Dept. of Bioresource Engineering, McCill University, 21 111 Lakeshore Road, Ste. Anne de Bellevue, QC H9X 3V9, Canada;

    Dept. of Bioresource Engineering, McCill University, 21 111 Lakeshore Road, Ste. Anne de Bellevue, QC H9X 3V9, Canada;

    Dept. of Water Resources Development Management, Indian Institute of Technology, Roorkee 247667, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Evaporation; Modeling; Gamma Test; ANN; LS-SVR; Fuzzy Logic; ANFIS;

    机译:蒸发;造型;伽玛测试人工神经网络LS-SVR;模糊逻辑;航空情报服务;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号