首页> 外文期刊>Expert Systems with Application >Automated exploration of datapath and unrolling factor during power-performance tradeoff in architectural synthesis using multi-dimensional PSO algorithm
【24h】

Automated exploration of datapath and unrolling factor during power-performance tradeoff in architectural synthesis using multi-dimensional PSO algorithm

机译:使用多维PSO算法在建筑综合的功率性能折衷期间自动探索数据路径和展开因素

获取原文
获取原文并翻译 | 示例

摘要

A novel algorithm for automated simultaneous exploration of datapath and Unrolling Factor (UF) during power-performance tradeoff in High Level Synthesis (HLS) using multi-dimensional particle swarm optimization (PSO) (termed as 'M-PSO') for control and data flow graphs (CDFGs) is presented. The major contributions of the proposed algorithm are as follows: (a) simultaneous exploration of datapath and loop UF through an integrated multi-dimensional particle encoding process using swarm intelligence; (b) an estimation model for computation of execution delay of a loop unrolled CDFG (based on a resource configuration visited) without requiring to tediously unroll the entire CDFG for the specified loop value in most cases; (c) balancing the tradeoff between power-performance metrics as well as control states and execution delay during loop unrolling; (d) sensitivity analysis of PSO parameter such as swarm size on the impact of exploration time and Quality of Results (QoR) of the proposed design space exploration (DSE) process. This analysis presented would assist the designer in pre-tuning the PSO parameters to an optimum value for achieving efficient exploration results within a quick runtime; (e) analysis of design metrics such as power, execution time and number of control steps of the global best particle found in every iteration with respect to increase/decrease in unrolling factor. The proposed approach when tested on a variety of data flow graphs (DFGs) and CDFGs indicated an average improvement in QoR of >28% and reduction in runtime of >94% compared to recent works.
机译:一种使用多维粒子群优化(PSO)(称为“ M-PSO”)进行控制和数据处理的高级综合(HLS)功率性能折衷过程中自动同时探索数据路径和展开因子(UF)的新颖算法流程图(CDFG)。该算法的主要贡献如下:(a)利用群体智能通过集成的多维粒子编码过程同时探索数据路径和循环超滤; (b)一种估算模型,用于计算循环展开的CDFG(基于访问的资源配置)的执行延迟,而在大多数情况下无需繁琐地展开整个CDFG以获取指定的循环值; (c)平衡功率性能指标,控制状态和循环展开期间的执行延迟之间的权衡; (d)对PSO参数(例如群大小)对拟议设计空间探索(DSE)过程的探索时间和结果质量(QoR)的影响进行敏感性分析。提出的分析将帮助设计人员将PSO参数预先调整为最佳值,以便在快速运行时间内获得有效的勘探结果。 (e)分析关于每次展开中发现的全局最佳粒子的功率,执行时间和控制步骤数等设计指标,以了解展开因子的增加/减少。当在各种数据流图(DFG)和CDFG上进行测试时,所提出的方法表明,与最近的工作相比,QoR的平均改善幅度大于28%,运行时间的减少幅度大于94%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号