首页> 外文期刊>Expert Systems with Application >Condition monitoring of induction motors: A review and an application of an ensemble of hybrid intelligent models
【24h】

Condition monitoring of induction motors: A review and an application of an ensemble of hybrid intelligent models

机译:感应电动机的状态监测:混合智能模型的回顾与应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a review on condition monitoring of induction motors is first presented. Then, an ensemble of hybrid intelligent models that is useful for condition monitoring of induction motors is proposed. The review covers two parts, i.e., (ⅰ) a total of nine commonly used condition monitoring methods of induction motors; and (ⅱ) intelligent learning models for condition monitoring of induction motors subject to single and multiple input signals. Based on the review findings, the Motor Current Signature Analysis (MCSA) method is selected for this study owing to its online, non-invasive properties and its requirement of only single input source; therefore leading to a cost-effective condition monitoring method. A hybrid intelligent model that consists of the Fuzzy Min-Max (FMM) neural network and the Random Forest (RF) model comprising an ensemble of Classification and Regression Trees is developed. The majority voting scheme is used to combine the predictions produced by the resulting FMM-RF ensemble (or FMM-RFE) members. A benchmark problem is first deployed to evaluate the usefulness of the FMM-RFE model. Then, the model is applied to condition monitoring of induction motors using a set of real data samples. Specifically, the stator current signals of induction motors are obtained using the MCSA method. The signals are processed to produce a set of harmonic-based features for classification using the FMM-RFE model. The experimental results show good performances in both noise-free and noisy environments. More importantly, a set of explanatory rules in the form of a decision tree can be extracted from the FMM-RFE model to justify its predictions. The outcomes ascertain the effectiveness of the proposed FMM-RFE model in undertaking condition monitoring tasks, especially for induction motors, under different environments.
机译:本文首先对感应电动机的状态监测进行了综述。然后,提出了一种混合智能模型集合,可用于感应电动机的状态监测。审查涵盖两个部分,即(ⅰ)共有九种常用的感应电动机状态监测方法; (ⅱ)智能学习模型,用于在单个和多个输入信号的作用下监视感应电动机的状态。根据审查结果,由于其在线,非侵入性特性以及仅需单个输入源的要求,因此选择了本电动机电流签名分析(MCSA)方法。因此导致一种经济有效的状态监测方法。开发了一种混合智能模型,该模型由模糊最小-最大(FMM)神经网络和包含分类树和回归树的集合的随机森林(RF)模型组成。多数表决方案用于合并由所得FMM-RF合奏(或FMM-RFE)成员产生的预测。首先部署一个基准问题来评估FMM-RFE模型的有效性。然后,使用一组实际数据样本将该模型应用于感应电动机的状态监测。具体地,使用MCSA方法获得感应电动机的定子电流信号。使用FMM-RFE模型对信号进行处理,以生成一组基于谐波的特征以进行分类。实验结果表明,在无噪声和嘈杂的环境中均具有良好的性能。更重要的是,可以从FMM-RFE模型中提取决策树形式的一组解释规则,以证明其预测正确。结果确定了所提出的FMM-RFE模型在进行状态监视任务(尤其是在不同环境下的感应电动机)中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号