首页> 外文期刊>Expert Systems with Application >Prediction of the Unified Parkinson's Disease Rating Scale assessment using a genetic programming system with geometric semantic genetic operators
【24h】

Prediction of the Unified Parkinson's Disease Rating Scale assessment using a genetic programming system with geometric semantic genetic operators

机译:使用具有几何语义遗传算子的遗传编程系统预测帕金森氏病统一疾病分级量表

获取原文
获取原文并翻译 | 示例

摘要

Unified Parkinson's Disease Rating Scale (UPDRS) assessment is the most used scale for tracking Parkinson's disease symptom progression. Nowadays, the tracking process requires a patient to undergo invasive and time-consuming specialized examinations in hospital clinics, under the supervision of trained medical staff. Thus, the process is costly and logistically inconvenient for both patients and clinicians. For this reason, new powerful computational tools, aimed at making the process more automatic, cheaper and less invasive, are becoming more and more a necessity. The purpose of this paper is to investigate the use of an innovative intelligent system based on genetic programming for the prediction of UPDRS assessment, using only data derived from simple, self-administered and non-invasive speech tests. The system we propose is called geometric semantic genetic programming and it is based on recently defined geometric semantic genetic operators. Experimental results, achieved using the largest database of Parkinson's disease speech in existence (approximately 6000 recordings from 42 Parkinson's disease patients, recruited in a six-month, multi-centre trial), show the appropriateness of the proposed system for the prediction of UPDRS assessment. In particular, the results obtained with geometric semantic genetic programming are significantly better than the ones produced by standard genetic programming and other state of the art machine learning methods both on training and unseen test data.
机译:统一的帕金森氏病评分量表(UPDRS)评估是用于追踪帕金森氏病症状进展的最常用量表。如今,跟踪过程要求患者在训练有素的医务人员的监督下,在医院诊所中进行侵入性且耗时的专门检查。因此,该过程对于患者和临床医生而言既昂贵又在物流上不方便。因此,越来越有必要使用新型强大的计算工具,以使该过程更加自动化,便宜且侵入性小。本文的目的是研究基于基因编程的创新智能系统在预测UPDRS评估中的应用,仅使用来自简单,自我管理和非侵入性语音测试的数据。我们提出的系统称为几何语义遗传编程,它基于最近定义的几何语义遗传算子。使用现有最大的帕金森氏病语音数据库获得的实验结果(在为期六个月的多中心试验中招募的42名帕金森氏病患者约有6000录音)表明,该系统适用于预测UPDRS评估。特别是,在训练和看不见的测试数据上,通过几何语义遗传编程获得的结果明显优于通过标准遗传编程和其他先进的机器学习方法获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号