首页> 外文期刊>Expert Systems with Application >A hybrid iterated local search and variable neighborhood descent heuristic applied to the cell formation problem
【24h】

A hybrid iterated local search and variable neighborhood descent heuristic applied to the cell formation problem

机译:混合迭代局部搜索和可变邻域下降启发法在细胞形成问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

The Cell Formation Problem is an NP-hard optimization problem that consists of grouping machines into cells dedicated to producing a family of product parts, so that each cell operates independently and inter-cellular movements are minimized. Due to its high computational complexity, several heuristic methods have been developed over the last decades. Hybrid methods based on adaptations of popular metaheuristic techniques have shown to provide good performance in terms of solution quality. This paper proposes a new approach for solving the Cell Formation Problem using the group efficacy objective function. Our method is based on the Iterated Local Search metaheuristic coupled with a variant of the Variable Neighborhood Descent method that uses a random ordering of neighborhoods in local search phase. We consider two types of constraints on the minimum cell size, comparing them with several well-known algorithms in the literature. Computational experiments have been performed on 35 widely used benchmark instances with up to 40 machines and 100 parts. The proposed algorithm, besides obtaining solutions at least as good as any reported results, was able to find several optimal solutions and improve the group efficacy for some instances with unknown optima. (C) 2015 Elsevier Ltd. All rights reserved.
机译:细胞形成问题是一个NP难的优化问题,它由将机器分组到专用于生产一系列产品零件的细胞中组成,因此每个细胞都可以独立运行,并且最大程度地减少了细胞间移动。由于其计算复杂性高,在过去的几十年中已经开发了几种启发式方法。基于流行的元启发式技术的改编的混合方法已显示出在解决方案质量方面的良好性能。本文提出了一种使用群体功效目标函数解决细胞形成问题的新方法。我们的方法是基于迭代局部搜索元启发式方法,结合可变邻域下降方法的一种变体,该方法在局部搜索阶段使用邻域的随机排序。我们考虑最小像元大小的两种约束,并将它们与文献中的几种著名算法进行比较。已经在35个广泛使用的基准实例上进行了计算实验,这些实例具有多达40台机器和100个零件。所提出的算法除了获得至少与任何已报告结果一样好的解决方案外,还能够找到一些最佳解决方案,并针对某些未知最佳情况的实例提高了小组效率。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号