首页> 外文期刊>Computers & operations research >Improving the quality of heuristic solutions for the capacitated vertex p-center problem through iterated greedy local search with variable neighborhood descent
【24h】

Improving the quality of heuristic solutions for the capacitated vertex p-center problem through iterated greedy local search with variable neighborhood descent

机译:通过具有可变邻域血统的迭代贪婪局部搜索来提高针对有能力顶点p中心问题的启发式解决方案的质量

获取原文
获取原文并翻译 | 示例

摘要

The capacitated vertex p-center problem is a location problem that consists of placing p facilities and assigning customers to each of these facilities so as to minimize the largest distance between any customer and its assigned facility, subject to demand capacity constraints for each facility. In this work, a metaheuristic for this location problem that integrates several components such as greedy randomized construction with adaptive probabilistic sampling and iterated greedy local search with variable neighborhood descent is presented. Empirical evidence over a widely used set of benchmark data sets on location literature reveals the positive impact of each of the developed components. Furthermore, it is found empirically that the proposed heuristic outperforms the best existing heuristic for this problem in terms of solution quality, running time, and reliability on finding feasible solutions for hard instances. (C) 2015 Elsevier Ltd. All rights reserved.
机译:受限制的顶点p中心问题是一个位置问题,包括放置p个设施并将客户分配给这些设施中的每一个,以便最大程度地减少任何客户与其所分配设施之间的最大距离,这取决于每个设施的需求容量约束。在这项工作中,提出了针对该位置问题的元启发式方法,该方法结合了多个组件,例如具有自适应概率采样的贪婪随机构造和具有可变邻域血统的迭代贪婪局部搜索。关于位置文献广泛使用的一组基准数据集的经验证据揭示了每个已开发组件的积极影响。此外,从经验上发现,就解决方案质量,运行时间和为硬实例找到可行解决方案的可靠性而言,针对该问题的拟议启发式方法的表现优于现有的最佳启发式方法。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号