首页> 外文期刊>Expert Systems with Application >User ratings analysis in social networks through a hypernetwork method
【24h】

User ratings analysis in social networks through a hypernetwork method

机译:通过超网络方法分析社交网络中的用户评分

获取原文
获取原文并翻译 | 示例

摘要

This study utilizes the critical properties of a complex social network to reveal its intrinsic characteristics and the laws governing the way information propagates across the network to identify the central, active users and opinion leaders. The hypernetwork method is applied to analyze user ratings in social networks (SNSs). After introducing the concept of a hypernetwork and its topological characteristics such as node degree, the strength of the node and node hyperdegree, collaborative recommendations in hypernetworks are formulated based on the topological characteristics. Finally, the new method developed is applied to analyze data from the Douban social network. In this hypernetwork, users are defined as hyperedges and the objects as nodes. Three hypernetworks focused on reviews of books, movies and music were constructed using the proposed method and found to share a similar law of trends. These topological characteristics are clearly an effective way to reflect the relationship between users and objects. This research will enable SNSs providers to offer better object resource management and a personalized service for users, as well as contributing to empirical analyses of other similar SNSs. (C) 2015 Elsevier Ltd. All rights reserved.
机译:这项研究利用复杂的社交网络的关键特性来揭示其内在特征以及控制信息在网络中传播方式的规律,从而识别出活跃的中央用户和意见领袖。超网络方法用于分析社交网络(SNS)中的用户评分。在介绍了超网络的概念及其拓扑特征(例如节点度,节点的强度和节点超度)之后,基于拓扑特征制定了超网络中的协作推荐。最后,将开发的新方法用于分析来自豆瓣社交网络的数据。在此超网络中,将用户定义为超边缘,将对象定义为节点。使用提出的方法构建了三个专注于书,电影和音乐评论的超网络,发现它们具有相似的趋势规律。这些拓扑特征显然是反映用户与对象之间关系的有效方法。这项研究将使SNS提供商能够为用户提供更好的对象资源管理和个性化服务,并有助于对其他类似SNS进行实证分析。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号